New Results on the Highest Energy Cosmic Rays

American Astronomical Society 200^{th} Meeting

Albuquerque, New Mexico

John A.J. Matthews

New Mexico Center for Particle Physics

University of New Mexico

June 3, 2002

- 1. Background ... highest energy cosmic rays
- 2. Status ...
- 3. New results ...
- 4. Emerging model ...
- 5. Next step ...
- 6. Summary ...

1. Background ... highest energy cosmic rays

Schematic of extensive air shower cascade

- Energy scale: $-10^{20} \text{ eV} \approx 16 \text{ Joules } \dots \text{ well}$ above future collider energies.
 - 1. cosmic rays are *observed* via the extensive air shower produced when they reach the earth's atmosphere
 - 2. 16 Joules /~ 16 μ sec (typical shower time) \approx 1 MW !

 \bigcirc

Schematic of air shower measurements

• Measurement of 10^{20} eV air showers:

- 1. km's *wide* at ground level ... sparse sampling OK!
- 2. Composition of *primary* cosmic rays from depth of shower maximum, X_{max} , and/or from μ/e ratio.
- 3. ~ 50ppm of shower energy is re-emitted as nitrogen fluorescence light (290 ~ 440nm) ... thus a 1-MW shower appears as a 50W relativistic light bulb!

Flux (m² ar a GeV)¹¹ Fluxes of Cosmic Roys 10 porticle per m²-second) 10 10 10 10^{-10} 10^{-13} 10^{-16} 10⁻¹ 10^{-22} 10^{-25} (1 particle per km^{*} 10-28 10¹⁰ 10¹¹ 10¹² 10¹³ 10¹⁴ 10^{2} 10¹⁶ 1010 10 1010

1. Background (con't) ...

Cosmic ray energy spectrum

• Rate: - low (~ 1/km²/century) ... so need <u>large</u> experiments ... about the area of Rhode Island! Fluorescence based experiments need dry (desert) air with good visibility.

1. Background (con't) ...

Cosmic ray flux scaled by E^3

• Structure in a power law spectrum:

- 1. knee at $\sim 4 \times 10^{15} \text{eV}$
- 2. second *knee* at $\sim 4 \times 10^{17} \text{eV}$
- 3. ankle $\sim 4 \times 10^{18} \text{eV}$
- 4. *cutoff* at ~ 10^{20} eV ... or not!

1. Background (con't) \dots

(One) possible source of 10^{20} eV cosmic rays

• Why (... just a couple of reasons):

- 1. At these energies <u>extra-galactic</u> cosmic rays probably dominate local (galactic) sources.
- At the same time the GZK cutoff *predicts* an end to the cosmic ray spectrum ... except for nearby (< 50Mpc) sources

Energy loss attenuation length, $\Lambda_{atten}(z=0)$

• Greisen-Zatsepin-Kuz'min (GZK) cutoff:

1. Cosmic rays interact with the cosmic micro-wave background (CMB) radiation; after a distance, d:

$$E = E_0 \cdot e^{-d/\Lambda_{atten}}$$

2. Steep drop of Λ_{atten} near 10²⁰ eV from the onset of π photo-production: $\gamma_{CMB} p \rightarrow \pi X$.

1. Background (con't) ...

Proton energy spectrum versus source red-shift, z

• GZK simulation (proton primary):

- 1. (Assumed) source spectrum: Flux(E) $\propto E^{-2}$
- 2. Observed spectrum scaled by E^3 ...
- 3. Only sources with red-shift $z \leq 0.03$ (about 150Mpc) should have any flux above $\sim 10^{20}$ eV.

2. Status ... highest energy cosmic rays

Akeno Giant Air Shower Array

AGASA detector layout

• Experiments probing 10^{20} eV cosmic rays:

- 1. Haverah Park, UK, 12km² ground array area
- 2. **AGASA**, Japan, 100km^2 ground array area
- 3. **HiRes**, Utah, $\sim 300 \text{km}^2$ (equivalent)
- 4. Pierre Auger, Argentina, 3000km² (building)

2. Status (con't) ...

AGASA spectrum above 10^{18} eV

• AGASA flux versus energy:

- 1. (Published) experiment with the largest *exposure*
- 2. *GZK* model: uniform distribution of extra-galactic sources, proton primary, source flux $J(E) \propto E^{-2}$, plus detector resolution
- 3. Two events well above 10^{20} eV!
- 4. Number of events above 10²⁰eV **inconsistent** with the curve!

2. Status (con't) \dots

(Preliminary) HiRes spectrum above 10^{17} eV

• (Preliminary) HiRes flux versus energy:

- 1. Similar data exposure to AGASA
- 2. Fewer (2 versus 10) events above 10^{20} eV!
- 3. One event well above 10^{20} eV!

2. Status (con't) \dots

AGASA arrival directions above $4 \times 10^{19} eV$

• AGASA arrival directions:

- 1. Primary cosmic ray direction measured to $\sim 1^\circ$
- 2. red squares (events > 10^{20} eV) and green dots (4 10×10^{19} eV) are consistent with large-scale source uniformity
- 3. Six 2.5° clusters of events: 5 doublets and 1 triplet
- 4. Two of the clusters lie *in* the super-galactic plane (blue line)

Simulated proton trajectories: 10^{18} , 10^{19} and 10^{20} eV in 2μ G fields ... $\geq 4 \times 10^{19}$ eV protons are deviated little by local (galactic) magnetic fields.

2. Status $(con't) \dots$

850 (g cm²) 800 · ₊ † † • ∕ת 750 700 Proton 650 600 Direct ANCA 550 HOR EGRA/AIROBICC ASE/VULCAN 500 DICE Flys Eye 450 QGSJET 400 350 15 16 17 18 14 19 log₁₀(Energy/eV)

Cosmic ray composition

• Average depth of shower maximum (X_{max}) is sensitive to primary cosmic ray *composition*:

- 1. light (p,He) dominate near $3 \times 10^{15} \text{eV}$
- 2. intermediate (C,N,O) to heavy (Si,Fe) dominate near 10^{17} eV!
- 3. *light* appear to dominate at the highest energies!

3. New results ... highest energy cosmic rays

Comparison of latest spectra

• Possible differences in energy scales:

- 1. (Preliminary) HiRes data are consistent with the earlier Fly's Eye experiment
- 2. Re-analyzed Haverah Park data [not shown] are consistent with HiRes.
- 3. AGASA data lie higher ... consistent with relative energy scale differences of $20 \sim 30\%$

3. New results (con't) ...

Unfolding of cosmic ray spectra near the *knee* Note: horizontal-axis units are GeV where $1 \text{ GeV} = 10^9 \text{eV}$

• KASKADE results ... astro-ph/0201109:

- 1. **Confirm** Casa-Blanca result: composition is *light* (p,He) near 3×10^{15} eV (3×10^{6} GeV) changing to *intermediate* near 3×10^{16} eV (3×10^{7} GeV).
- 2. **Extends** previous studies to show that *intermediate* (C,N,O) to *heavy* (Si,Fe) dominate near 10¹⁷eV!
- 3. Data are consistent with *rigidity-dependent* breaks in flux for different element groups.

3. New results (con't) ...

Cosmic ray composition including new results

• Average depth of shower maximum (X_{max}) is sensitive to primary cosmic ray *composition*:

- 1. red KASKADE (preliminary): astro-ph/0201109
- 2. orange Haverah Park (re-analyzed): astroph/0203150, consistent with *mixed* composition [34%-light (p), 66%-heavy (Fe)]
- 3. blue HiRes (preliminary): K. Reil, Thesis, March 2002

3. New results (con't) ...

Simulations evolve to describe the data better ... Note: horizontal-axis units are GeV where $1 \text{ GeV} = 10^9 \text{eV}$

• Simulations are needed to link *e.g.* depth of shower maximum (X_{max}) with composition:

- Two Monte Carlo (hadronic interaction) models (QGSJet and SIBYLL) are used to interpret the data; e.g. D. Heck et al astro-ph/0103073; J. Alvarez-Muniz et al astro-ph/0205302
- 2. (Systematic) uncertainties remain ...

4. Emerging model ... highest energy cosmic rays

Conceptual model for cosmic ray flux ...

S. Yoshida and H. Dai, astro-ph/9802294

• Consider a 2-component model:

- 1. KASKADE data consistent with *one* component for CR-I and CR-II (*e.g.* galactic super-novas ...)
- 2. **Spectrum steepening**, at 1^{st} and 2^{nd} knee, from acceleration or lifetime/retention limitations
- 3. **Spectrum flattening**, at the ankle, consistent with a new (2^{nd}) component

B. Wiebel-Sooth and P. Biermann, Springer Verlag, Sept 1998 Note: horizontal-axis units are GeV where $1 \text{ GeV} = 10^9 \text{eV}$

- 1. Slope *breaks* at the 1st and 2nd knee follow constant *rigidity* physics observed by KASKADE ... *i.e.* energy features scale in atomic charge: $E_{Fe} \equiv 26 \times E_p$.
- 2. 2^{nd} break, $E_p \approx 4 \times 10^{17} \text{eV}$, proton Larmor-radius: $\left(\frac{R_p}{1 k p c}\right) \approx \left(\frac{E_p}{10^{18} e V}\right) \cdot \left(\frac{1 \mu G}{B}\right) \approx \text{galaxy thickness.}$

4. Emerging model (con't) ... Simple summary

Cosmic ray (> 4×10^{19} eV) arrival directions ...

- 1. 1st component: broad *composition* light (p,He) to heavy (Si,Fe,..); may extend to energies $\sim 10^{19}$ eV
- 2. 2^{nd} component: lighter (significant proton) composition; possibly measurable implications to below 10^{18} eV
- 3. Primary motivations for the 2^{nd} component: flattening of the flux above the ankle (~ 4 × 10¹⁸ eV) and a change to lower mass composition at the highest cosmic ray energies: above ~ 10¹⁸ eV
- 4. The primary motivation for identifying the 2nd component as extra-galactic is the isotropy of the highest energy cosmic rays (strengthened if *light* (p,He))

4. Emerging model (con't) ... EXTRA-galactic(I)

Theoretical model for EXTRA-GALACTIC flux ...

V. Berezinsky et al, astro-ph/0204357

- 1. Several *conventional* astro-physical models studied: uniform sources, local *over-dense* sources, with GRB or AGN constraints
- 2. Figure shows "local over-dense" case: over-dense region size, $R_{overdense} = 30$ Mpc, and 4 over-densities: $n/n_0 = 1, 2, 10, 30$ for curves 1 4
- 3. Actual $n/n_0 \approx 2$, thus can not describe the highest energy events; models well to $\leq 10^{18} \text{eV}!$

4. Emerging model (con't) ... EXTRA-galactic(II)

Theoretical model for EXTRA-GALACTIC flux ... G. Sigl et al, astro-ph/9806283

- 1. Model assumes local (~ 10Mpc Virgo cluster) source with turbulent, super-galactic magnetic fields (~ 0.1μ G) ... sensitive to field parameters!
- 2. Figure shows case with source at 10Mpc, $B_{rms} = 0.1 \mu$ G, proton (injection) spectrum $\propto E^{-2.4}$
- 3. Model describes the (AGASA, Fly's Eye and Haverah Park) data above 10¹⁹eV ... but single source, tuning of source distance and field parameters!

4. Emerging model (con't) ...

HiRes stereo event with $E \approx 2.5 \times 10^{20} eV$

• We can't resolve the 10²⁰eV puzzle today!

- 1. AGASA, Fly's Eye and HiRes observe (a few) events well above 10^{20} eV
- 2. What is the detailed shape of the spectrum?
- 3. What is the *composition*?
- 4. What are the arrival directions (and clustering)?

5. Next step ... highest energy cosmic rays

Pierre Auger (south) experiment ... Malargue, Argentina

- **Biased opinion ...** high quality (hybrid) data are needed from $< 10^{18}$ eV (10^{17} eV?) to a few $\times 10^{20}$ eV:
 - 1. need to link with galactic source(s) measurements
 - 2. need to remove (reduce) the model dependence of the significance of the big events $> 10^{20}$ eV
 - 3. need to tune the Monte Carlo (hadronic interaction) models

5. Next step (con't) ... **Detection method**

Pierre Auger hybrid detection ...

- 1. Hybrid detection: simultaneous measurement of the air shower by a ground array and by fluorescence telescopes
- 2. Hybrid events cross-check and cross-calibrate the two types of detectors and provide the best *composition* measurement
- 3. Ground array (only) events provide most statistics (*i.e.* highest energy events)

5. Next step (con't) \dots

Typical Pierre Auger ground array detector ...

10m², 1.2m deep, water cherenkov detector Solar powered, radio communication to central trigger Site environment very similar to Albuquerque ...

- > 30 of 1600 ground array detectors installed and running (initial *engineering array* test)
- 2. ~ 100 ground array detectors and 12 of 24 fluorescence telescopes scheduled to be operational by spring 2003

5. Next step (con't) \dots

Biggest Pierre Auger hybrid event ... $\sim 3 \times 10^{19} \text{eV}$ ~ 70 hybrid events observed during recent 5-month run

- 1. Event triggered 11 ground array detectors
- 2. Event was observed (simultaneously) by 1 fluorescence telescope
- 3. Hybrid events are already helping to *tune* both detector subsystems.

5. Next step (con't) ... some "perspective"!

John Linsley ... a little NW of the Abq. convention center

- February 1962: $1^{st} 10^{20}$ eV event (Volcano Ranch)
 - 1. Event triggered 14 ground array detectors
 - 2. Event was about as un-expected then as it would be today!

- 6. Summary ... highest energy cosmic rays
 - Cosmic rays are observed by three experiments: AGASA, Fly's Eye and HiRes to energies above 10^{20} eV.
 - AGASA energy scale may be 20 ~ 30% higher than Fly's Eye, Haverah Park and HiRes. IF AGASA energies scaled down then fewer events > 10²⁰eV but *biggest* events remain.
 - Sources of the events above the cosmic microwave background *GZK cutoff* "must" be (relatively) nearby ... but are still unknown!
 - New data are consistent with light (p,He) primaries at the highest energies. Hadronic interaction uncertainties weaken this conclusion.
 - Arrival directions of events > 4 × 10¹⁹ eV are isotropic supporting the extra-galactic source of these cosmic rays. AGASA *clusters* interesting ... but could be a statistical fluctuation.
 - New data increase the support for (predominantly) 2-component model of cosmic rays above 10¹⁵eV. However limited data, particularly at the highest energies, often provide little constraint to theoretical models.