

Is gamma coreness a useful concept for gamma:CR separation (II)?

Robert Lauer, John A.J. Matthews and Zhixiang Ren

johnm@phys.unm.edu

University of New Mexico Albuquerque, NM 87131

Where are HAWC small events (I)?

- HAWC large events typically have their cores on the array ...
- What about *small* events as in the *n0* analysis bin:
 - 1. Left: plot of gamma Monte Carlo events VS core fiducial scale (CFS)
 - 2. Middle: plot of background Monte Carlo events VS CFS
 - 3. Right: plot of data events VS CFS ... which blush do not look much like gamma or background Monte Carlo predictions!
- Naively restricting gamma events to $CFS \lesssim 100$ could reduce backgrounds.
- Should we use events in the SFCF tails with CFS ≥ 150 ?

Where are HAWC small events (II)?

- What about *small* events as in the *n1* analysis bin: Left: plot of gamma Monte Carlo events VS CFS, Middle: plot of background Monte Carlo events, and Right: plot of data events.
- As with the *n0* analysis bin:
 - 1. data to not look like Monte Carlo simulations ...
 - 2. naively restricting gamma events to $CFS \lesssim 100$ could reduce backgrounds.
- If CFS ≤ 100 then events are on the array accessible to gamma coreness tests!
- But first: the SFCF tails with CFS $\gtrsim 150$ persist! What is going on?

What to do with SFCF events with CFS $\gtrsim\!\!150$?

- What is going on with SFCF reconstructions with CFS $\gtrsim 150$?
 - 1. Left: plot of no events' reconstructed core positions
 - 2. Right: plot of *n0* events' Monte Carlo core positions
- In comparing Left VS Right plots of CFS 2150 events: is the SFCF providing any useful information on the core position? Should events with CFS 2150 be classified as bad SFCF reconstructions?

New gamma coreness module: GamCore.cc (I)

- Our analysis is based on the LatDist.cc NKG code by Kelly Malone ... but with several changes:
 - 1. restrict the minimum (5m) and maximum fit distance from the SFCF core: *e.g.* for $n0 \sim n2$ events this is 25m (to avoid issues of tanks with no signals).
 - 2. require the closest tank to be near the SFCF core: default < 7.5m
 - 3. fit the same (refined) tank signals used in the second call to SFCF (these are the signals plotted in the HAWC event display).
 - 4. modify the signal uncertainty to include the core position uncertainty.
 - 5. include in the output two tank *counts*: *numpoints* and *num_sum*.
- Plots show *n0* events with: (Left) s = 0.5, (Middle) s = 1.61 and (Right) s = 2.5

New gamma coreness module: GamCore.cc (II)

- The analysis output includes 4 outputs:
 - 1. GamCoreAge = NKG shower *age* parameter, *s*.
 - 2. GamCoreAmp = *log10-amplitude* of the NKG fit
 - 3. GamCoreChi2 = fit chisq / (number of tanks in NKG fit \equiv *numpoints*)
 - 4. GamCorePackInt = compound of 3 integers: *numpoints*, *r*_test and *num_sum*
- Quantity <u>numpoints</u> is the number of tanks (with signals ≥ 0.1 PE) used in the GamCore fit. This is shown for (Left) gamma Monte Carlo n0 events and (Right) data n0 events. Note: n0 event backgrounds peak at low values of numpoints and a larger fraction fail the minimum number of tanks requirement: numpoints ≥ 5 .

New gamma coreness module: GamCore.cc (III)

- The analysis output includes 4 outputs:
 - 1. the first 3 are the "same" as in the LatDist.cc output ...
 - 2. GamCorePackInt = compound of 3 integers: *numpoints*, *r_test* and *num_sum*
- Quantity <u>num_sum</u> is the number of tanks with signals above some threshold, e.g.
 2.5 PEs, outside a radius with expected signals < ¹/₃ PE from the GamCore NKG fit. This is shown for (Left) gamma Monte Carlo n0 events and (Right) data n0 events. Note: n0 backgrounds extend to larger values of num_sum.

New gamma coreness module: GamCore.cc (IV)

- The analysis output includes 4 outputs:
 - 1. the first 3 are the "same" as in LatDist.cc output ...
 - 2. GamCorePackInt = compound of 3 integers: *numpoints*, *r_test* and *num_sum*
- Quantity <u>num_sum</u> is the number of tanks with signals above some threshold, *e.g.* 2.5 PEs, outside a radius with expected signals < ¹/₃ PE from the GamCore NKG fit. This is shown for (Left) gamma Monte Carlo *n1* events and (Right) data *n1* events. Note: *n1* backgrounds extend to somewhat larger values of num_sum.

Summary ...

- Small events, n0 and n1 analysis bins, would probably have reduced backgrounds if we restrict CFS \$\leftharpoonup 100.
- Then cores will be on the array and the new GamCore module provides additional quantities, *numpoints* and *num_sum* to enhance gamma signals.
- And gamma Monte Carlo events on the array are predicted to have better angular pointing: Left average (MC-reconstructed) direction (degrees) VS CFS for n0 and Right n1 events. See "Additional slides" for more details ...
- Aside: should events with $CFS \gtrsim 150$ be classified as *bad* SFCF reconstructions?

Additional slides

HAWC phone meeting, September 26, 2016 – p.10/20

Core Fiducial Scale matters: *n0* **analysis bin**

- Left plot: average gamma (MC-reconstructed) direction (degrees) VS CFS
- Right plot: average gamma MC log10(energy(GeV)) VS CFS; thus < 2.4 >= 250 GeV.

Core Fiducial Scale matters: *n1* **analysis bin**

- Left plot: average gamma (MC-reconstructed) direction (degrees) VS CFS
- Right plot: average gamma MC log10(energy(GeV)) VS CFS; thus < 2.65 >= 450 GeV.

Core Fiducial Scale matters: *n2* **analysis bin**

- Left plot: average gamma (MC-reconstructed) direction (degrees) VS CFS
- Right plot: average gamma MC log10(energy(GeV)) VS CFS; thus < 2.9 >= 800 GeV.

Core Fiducial Scale matters: *n*3 **analysis bin**

- Left plot: average gamma (MC-reconstructed) direction (degrees) VS CFS
- Right plot: average gamma MC log10(energy(GeV)) VS CFS; thus < 3.1 >= 1.25 TeV.

Core Fiducial Scale matters: *n4* **analysis bin**

- Left plot: average gamma (MC-reconstructed) direction (degrees) VS CFS
- Right plot: average gamma MC log10(energy(GeV)) VS CFS; thus < 3.4 >= 2.5 TeV.

Core Fiducial Scale matters: *n5* **analysis bin**

- Left plot: gamma (MC-reconstructed) direction (degrees) VS CFS
- Right plot: average gamma MC log10(energy(GeV)) VS CFS; thus < 3.6 >= 4.0 TeV.

Core Fiducial Scale matters: *n6* **analysis bin**

- Left plot: gamma (MC-reconstructed) direction (degrees) VS CFS
 - Right plot: average gamma MC log10(energy(GeV)) VS CFS; thus < 3.8 >= 6.3 TeV.

Core Fiducial Scale matters: *n7* **analysis bin**

- Left plot: gamma (MC-reconstructed) direction (degrees) VS CFS
- Right plot: average gamma MC log10(energy(GeV)) VS CFS; thus < 4.0 >= 10. TeV.

The University of New Mexico

Core Fiducial Scale matters: *n8* **analysis bin**

- Left plot: gamma (MC-reconstructed) direction (degrees) VS CFS
- Right plot: average gamma MC log10(energy(GeV)) VS CFS; thus < 4.25 >= 18. TeV.

Core Fiducial Scale matters: *n9* **analysis bin**

- Left plot: gamma (MC-reconstructed) direction (degrees) VS CFS
- Right plot: average gamma MC log10(energy(GeV)) VS CFS; thus < 4.6 >= 40. TeV.