

Department Research:

Indirect Search for Dark Matter

John A.J. Matthews

johnm@phys.unm.edu

University of New Mexico Albuquerque, NM 87131

Search for dark matter ... Who/what at UNM?

- Using the virial theorem to analyze the Coma galaxy cluster in 1933, Fritz Zwicky inferred the existence of Dark Matter, DM.
- During the 1970s, Vera Rubin obtained the strongest evidence (to that time) for the existence of DM.
- Yet today many DM details are still unknown ... sort of embarrassing!
- Several PANDA faculty's research focuses on Dark Matter; my (experimental physics) research group includes:

Faculty: John Matthews

Post Doc: Robert Lauer

Student: Zhixiang Ren

- Which of my experiments focus on Dark Matter:
 - High Altitude Water Cherenkov [HAWC] in Mexico with Professor Gold.
 - Small program of *laboratory* dark matter R&D with Professor Loomba's (directional dark matter) DRIFT experiment group.

DM overview ... Particle Physics Focus

Our DM tour for today includes:

- brief overview of what we know about DM
- particle physics view of DM
- particle physics experimental plan:
 - 1. direct detection of DM through scattering of DM particles on target nuclei in the laboratory, e.g. DRIFT experiment
 - 2. indirect detection of DM through observation of DM annihilation (or decay) to e.g. gamma-rays by the HAWC experiment
 - 3. direct production of DM particles, e.g. at the LHC collider at CERN.
- overview of HAWC experiment
- some details of our HAWC program looking for DM annihilation/decays in nearby astronomical objects

Dark matter all around

→ overwhelming evidence on all scales!

Cosmic Dark Matter Evidence

- Galaxies reside in large dark matter halos that make up most of their mass
 - Coma Cluster + Virial Theorem, F. Zwicky (1937)
 - Galactic rotation curves, V.
 Rubin et al. (1980)

All observational evidence for dark matter comes from space

Cosmic Dark Matter Evidence

- Dark Matter is virtually collisionless
 - The Bullet Cluster, D. Clowe et al. (2006)

All observational evidence for dark matter comes from space

Why particle dark re, z_eq matter?

curvature, z_eq

sound speed = baryon to radiation ratio

- Why not just ordinary (dark) baryons?
- A: BBN and CMB make independent measurements of the baryon fraction. Observations only accounted for with non-interacting matter

COSMIC MICROWAVE BACKGROUND

- The CMB angular power spectrum depends on several parameters, including Ω_{B} , Ω_{M} , Ω_{Λ} (Ω_{Λ} is the vacuum density)
- Matching location and heights of the peaks constrains these parameters and geometry of the Universe (flat, $\Omega_{total}=1$)

 Ω_{B} 0.0449 ± 0.0028 Jarosik et al. 2011 **DM density** 0.222 ± 0.026 Ω_{Λ} 0.734 ± 0.029

Dark matter

credit:WMAP

- Existence by now essentially impossible to challenge!
 - $\Omega_{\mathrm{CDM}} = 0.233 \pm 0.013$ (WMAP)
 - electrically neutral (dark!)
 - non-baryonic (BBN)
 - cold dissipationless and negligible free-streaming effects (structure formation)
 - collisionless (bullet cluster)
- WIMPS are particularly good candidates:
 - ✓ well-motivated from particle physics [SUSY, EDs, little Higgs, ...]
 - √ thermal production "automatically" leads to the right relic abundance

The WIMP "miracle"

The number density of Weakly Interacting Massive Particles in the early universe:

Fig.: Jungman, Kamionkowski & Griest, PR'96

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v \rangle \left(n_{\chi}^2 - n_{\chi eq}^2 \right)$$

 $\langle \sigma v \rangle$: $\chi \chi \to {\rm SM~SM}$ (thermal average)

"Freeze-out" when annihilation rate falls behind expansion rate $(\rightarrow a^3 n_{\chi} \sim \text{const.})$

Pelic density (today): $\Omega_\chi h^2 \sim \frac{3\cdot 10^{-27} {
m cm}^3/{
m s}}{\langle \sigma v \rangle} \sim \mathcal{O}(0.1)$

for weak-scale

interactions!

The Dark Matter Questionnaire

Mass Spin Stable? Yes No Couplings: Gravity Weak Interaction? Higgs? Quarks / Gluons? Leptons? Thermal Relic? Yes

How to Investigate Dark Matter

How to Investigate Dark Matter

Gamma-rays from dark matter annihilations

- **Direct detection:** scattering of DM particles on target nuclei (nuclei recoil expected). A.
- **B**. **Indirect detection:** DM annihilation products (neutrinos, positrons, gammas...)
- **Direct production** of DM particles at the lab.

Why gammas?

Siegal-Gaskins' talks ✓ Energy scale of annihilation products set by DM particle mass

→ favored models ~GeV-TeV

✓ Gamma-rays travel following straight lines

 \rightarrow source can be known

√[In the local Universe] Gamma-rays do not suffer from attenuation → spectral information retained.

Indirect DM searches

- DM has to be (quasi-)stable against decay...
- ... but can usually pair-annihilate into SM particles
- Try to spot those in cosmic rays of various kinds
- The challenge: i) absolute rates
 - → regions of high DM density
 - ii) discrimination against other sources
 - → low background; clear signatures

Indirect DM searches

Gamma rays:

- Rather high rates
- No attenuation when propagating through halo
- No assumptions about diffuse halo necessary
- Point directly to the sources: clear spatial signatures
- Clear spectral signatures to look for

Complementarity of Gamma-Ray Detectors

- Space-based detectors continuous full-sky coverage in GeV
- Ground-based detectors have TeV sensitivity
 - IACTs (pointed) excellent energy and angle resolution
 - HAWC has 24-hour >1/2 sky coverage

Wide-field/Continuous Operation TeV Sensitivity

Fermi AGILE EGRET

HAWC ARGO Milagro

VERITAS HESS MAGIC

Gamma-ray air showers

Direct y-detection

e Field of Viev Continuous
Operations

Shower particle interception

Shower imaging

2nd Generation Water Cherenkov: HAWC

- Sierra Negra volcano near Puebla, Mexico
- High altitude site at 4100 m
- Temperate climate
- Existing infrastructure from LMT
- 17 radiation lengths of atm.
 Overburden (vs. 27 at sea level)

HAWC Site

Water Cherenkov Method

- Robust and cost-effective surface detection technique
- Water tanks: 7.3 m radius, 5 m height, 185 kL purified water
- ► Tanks contain three 8" R5912 PMTs and one 10" R7081-HQE PMT looking up to capture Cherenkov light from shower front

How Does HAWC Work?

 Close-packed array of water-Cherenkov detectors, 20000 m²

Background Rejection

CR rejection using topological cut in hit pattern

Requires sufficient number of triggered channels (>70) to work well. Q-value $(\varepsilon_{Y}/\sqrt{\varepsilon_{CR}})$ is ~5 for point sources

HAWC Events

Gamma

Hadron

Angle Reconstruction

The HAWC collaboration

Galactic Distribution of Dark Matter

Galactic Center DM clumps in Halo Large statistics Few backgrounds Complex astrophysical Unknown location fore/backgrounds **Galactic latitude Extragalactic** (looking above **Spectral Lines** Smoking gun All galaxies Galactic plane) Isotropic Small signal **Galactic Halo** Galactic longitude Large statistics (looking away from Complex astrophysical Galactic center) fore/backgrounds **Galaxies Clusters** e.g. Virgo **Satellite Galaxies**

Aquarius (A1) simulation

DM enriched

likely astrophysical

fore/backgrounds

dSph DM enriched

Known location

Smoking gun

Milky Way satellite galaxies (dwarf spheroidals)

WIMP ANNIHILATION(OR DECAY) SIGNAL

E.g. photons from DM annihilation:

particle physics

$$\frac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\phi,\theta) = \frac{1}{4\pi} \frac{\langle \sigma_{ann}v \rangle}{2m_{WIMP}^2} \sum_{f} \frac{dN_{\gamma}^f}{dE_{\gamma}} B_f$$

$$\times \left(\int_{\Delta\Omega(\phi,\theta)} d\Omega' \int_{los} \rho^2(r(l,\phi')) dl(r,\phi') \right)$$

DM distribution

For DM decay:

- $<\sigma_{ann}v>/2m^2_{WIMP} \rightarrow 1/\tau m_{WIMP}$
- $\bullet \ \varrho^2 \rightarrow \varrho$
- Charged particles are more complicated (need to include propagation, energy losses)

Gamma rays from DM Annihilation

What we observe

Intrinsic Particle **Properties**

Astrophysics

$$\Phi_{\chi}(E, \Psi) = \frac{\langle \sigma_{\chi} v \rangle}{2} \sum \frac{dN_f}{dE} B_f \int_{LOS} dl(\Psi) \frac{1}{4 \pi} \frac{\rho(l)^2}{m_{\chi}^2}$$

Monochromatic Signal

J-factor - Line of sight integral over a ROI

Andrea Albert (SLAC)

= 8.5 kpc

Dark matter photon spectra

- "soft" channels:
 produce a continuum
 gamma-ray spectrum
 primarily from decay of
 neutral pions
- "hard channels": include final state radiation (FSR) associated with charged leptons in the final states
- line emission: γγ, Ζγ, hγ (not shown), loopsuppressed

Spectra calculated with PPPC 4 DM ID [Cirelli et al. 2010]

Dwarf Galaxies' J-Factors

RECAP Current constraints

95% CL upper limits on annihilation cross section to bb

Fermi LAT dSphs Results

- Joint likelihood analysis of 15 dwarf galaxies
- Limits exclude thermal relic <σν>_{ann} in bb channel for 5 GeV < m_x < 100 GeV

Dark Matter Sensitivity (5 years)

Annihilation

[Phys. Rev. D 90 (2014), arxiv:1405.1730]

Decay

Most competitive for extended sources

Summary

- The recently completed HAWC TeV gamma-ray observatory provides a unique instrument for studying several particle physics topics: most significantly the indirect-detection search for dark matter annihilation/decay.
- Indirect detection searches for dark matter are an important complement to other dark matter searches. Recall that all observational evidence for dark matter comes (so far) from space!
- HAWC is not the only experiment but is closest in its' survey operation to the Fermi GeV gamma-ray satellite. The Fermi-LAT measurements have reached the thermal relic limit over some of their mass-sensitivity range.
- Sadly no definitive gamma-ray signal has been seen ...
- Thus the embarrassement continues ...