Highest Energy Cosmic Rays: Probe of the Extreme Universe

Colloquium Department of Physics Texas Tech Univeristy

John A.J. Matthews

New Mexico Center for Particle Physics University of New Mexico January 29, 2004

- 1. Background ... highest energy cosmic rays
- 2. Status ...
- 3. Emerging model ...
- 4. Next (generation) experiments ...
- 5. Summary ...

1. Background ... what are cosmic rays?

Cosmic ray detection depends on cosmic ray type and energy

- Cosmic Rays (CRs) ... google Web definition:
 - 1. Highly energetic sub-atomic particles, mostly protons and helium nuclei, which travel across space at close to the speed of light and then rain down on the earth.
 - 2. The lowest energy cosmic rays originate in the Sun; higher energy ones from supernovae and pulsars within the Galaxy, whilst those with the **highest energy of all <u>may</u> be extragalactic in origin, possibly from quasars and active galactic nuclei**.

1. Background ... more than "p and He"!

Source physics is best unraveled using many different observations e.g. radio, visible, X-ray, ...

Particle astrophysics experiments extend these measurements to include:

- "protons" (special case of *light* nuclei)
- "iron" (special case of *heavy* nuclei)
- "gamma"-rays
- neutrinos

1. Background ... the actual observables!

• Energy:

- the number of CR events versus energy is called the CR **spectrum**
- the reconstructed energy of each primary CR has a precision $\sim 20\%$

• Arrival direction:

- the reconstructed direction of each primary CR has a precision of $\sim 1^\circ$
- as (conventional) CRs are charged, galactic and extra-galactic magnetic fields influence the CR arrival directions!

• Particle type:

- the particle type, at a given CR energy, is called the CR composition
- for (conventional) CRs this is the least well determined quantity because of: large shower-to-shower fluctuations and Monte Carlo (shower simulation) uncertainties ... more later!

1. Background ... end of the spectrum!

Cosmic ray energy spectrum

- Most interest at $\gtrsim 10^{20} eV \dots$ more later!
- Rate: low (~ 1/km²/century) ... so need <u>large</u> experiments ... about the area of Rhode Island! Fluorescence based experiments need dry (desert) air with good visibility.

1. Background ... not simple power law!

Cosmic ray flux scaled by E^3

• Structure in a power law spectrum:

- 1. knee at $\sim 4 \times 10^{15} \text{eV}$
- 2. second knee at $\sim 4 \times 10^{17} \text{eV}$
- 3. ankle $\sim 4 \times 10^{18} \text{eV}$
- 4. cutoff at ~ 10^{20} eV ... or not!

• $10 \sim 20$ events have been observed > 10^{20} eV!

1. Background ... more than "fine print"!

(One) possible source of 10^{20} eV cosmic rays

• Why do it? ... just a couple of reasons:

- 1. At these energies <u>extra-galactic</u> cosmic rays probably dominate local (galactic) sources.
- 2. At the same time the GZK cutoff *predicts* an end to the cosmic ray spectrum ... except for <u>nearby</u> ($\gtrsim 50$ Mpc) sources.

1. Background ... only *ideas* at this time!

Acceleration to 10^{20} eV is difficult ...

• Classes of *possible* sources:

- 1. *Extreme* astrophysical sources: super-massive black holes, GRBs, colliding galaxies, ...
- 2. *Particle physics* motivated: massive relic particles or relics of early universe
- 3. **OR** new astrophysics
- 4. **OR** new physics

1. Background ... CMB wall at 10^{20} eV!

Energy loss attenuation length, $\Lambda_{atten}(z=0)$

• Greisen-Zatsepin-Kuz'min (GZK) cutoff:

1. Cosmic rays interact with the cosmic micro-wave background (CMB) radiation; after a distance, d:

$$E = E_0 \cdot e^{-d/\Lambda_{allen}}$$

2. Steep drop of Λ_{atten} near 10²⁰ eV from the onset of π photo-production: $\gamma_{CMB} p \rightarrow \pi X$.

1. Background ... **p** spectrum $VS \mathbf{z}_{source}$!

• GZK simulation (proton primary):

- 1. (Assumed) source spectrum: Flux(E) $\propto E^{-2}$
- 2. Observed spectrum scaled by E^3 ...
- 3. Only sources with red-shift $z \le 0.03$ (about 150Mpc) should have any flux above $\sim 10^{20}$ eV.
- 4. But cosmic rays with energies > $10^{20} eV$ have been observed ... so sources should be nearby!

1. Background ... will sources match?

Galaxies (pink) and Dark Matter (blue) within 93Mpc [courtesy A. Kravtsov]

• For the highest energy $(> 10^{20} eV)$ particles:

- High magnetic rigidity of primaries <u>if protons</u>
- Nearby universe is not isotropic ... thus highest energy particles should not be isotropic
- Baring magnetic field surprises, arrival directions should *cluster* ... but will they and in which directions?

1. Background ... experimental details!

Schematic of extensive air shower cascade

- Energy scale: -10^{20} eV = 16 Joules ... <u>well</u> above future collider energies.
 - 1. cosmic rays are *observed* via the extensive air shower produced when they reach the earth's atmosphere
 - 2. 16 Joules / ~ 16 μ sec (typical shower time) ~ 1 MW !

1. Background ... **atmosphere = detector!**

Schematic of air shower measurements

• Measurement of 10^{20} eV air showers:

- 1. km's *wide* at ground level ... sparse sampling OK!
- 2. Composition of *primary* cosmic rays from depth of shower maximum, X_{max} , and/or from μ/e ratio.
- 3. ~ 50ppm of shower energy is re-emitted as nitrogen *fluores-cence* light (290 ~ 440nm) ... thus a 1-MW shower appears as a 50W relativistic *light bulb*!

2. Status ... the bigger the better! Pre-ICRC03 exposures

• Experiments probing 10^{20} eV cosmic rays:

- 1. Fly's Eye, Utah, $\sim 30 \text{km}^2$ (equivalent)
- 2. Haverah Park, UK, 12km² ground array area
- 3. Yakutsk, Russia, 7 $\sim 16 \rm km^2$ ground array area
- 4. **AGASA**, Japan, 100km^2 ground array area
- 5. **HiRes**, Utah, $\sim 300 \text{km}^2$ (equivalent)
- 6. **Pierre Auger**, Argentina, 3000km² (building)

2. Status ... AGASA above GZK curve!

AGASA spectrum above 10^{18} eV

• AGASA flux versus energy:

- 1. (Published) experiment with the largest exposure
- 2. *GZK* model: uniform distribution of extra-galactic sources, proton primary, source flux $J(E) \propto E^{-2}$, plus detector resolution
- 3. 11 events above 10^{20} eV and 2 well above 10^{20} eV!
- 4. Number of events above 10²⁰eV **inconsistent** with the curve!

2. Status ... HiRes consistent with GZK!

Combined HiRes I and II monocular spectra

• HiRes flux versus energy:

- 1. Most recent data as of the ICRC 2003 conference
- 2. Only one event > 10^{20} eV ... but exposure \geq AGASA!
- 3. HiRes I and II *monocular* spectra consistent with "old" Fly's Eye stereo spectrum.
- 4. Something **may be** happening that is GZK-like ... but we can not be sure!

Too Low Statistics for clear GZK or no-GZK determination

number of events above 10²⁰eV: no GZK @ 2.5 sigma

number of events above 10²⁰eV: GZK cutoff

DeMarco et al (ICRC03)

2. Status ... look at the RAW data!

- Data consistent with 20 ~ 30% systematic energy difference between AGASA and HiRes ... in agreement with experimental energy-scale uncertainties.
- Confirmation of GZK-*structure*, or not, requires significantly reduced statistical errors!

2. Status ... AGASA arrival directions

• AGASA arrival directions above $4 \times 10^{19} eV$

- 1. Primary cosmic ray direction measured to $\sim 1^\circ$
- 2. red squares (events > 10^{20} eV) and green dots (4 10×10^{19} eV) are consistent with large-scale source uniformity
- 3. Six 2.5° clusters of events: 5 doublets and 1 triplet
- 4. Two of the clusters lie *in* the super-galactic plane (blue line)

2. Status ... HiRes arrival directions

No significant clustering seen yet. "Bananas are harder than circles..." Flux upper limits of on point sources with E > 10^{18.5} eV Cygnus X-3 Dipole limit: Gal. Center, Centaurus A, M-87 HiRes-I Monocular Data, E > 1019.5 eV 90 0 -15 -30 -45 -60 -75 -90 L 18 16 14 10 22 20 12 8 6 2 0 Right Ascension (Hours)

- *Monocular* data have asymmetrical pointing errors ...
- No "exact" match with AGASA ... but some clusters are close!
- Significantly more events are needed ... !

2. Status ... B-field alters CR trajectories!

- Simulated proton trajectories: 10^{18} , 10^{19} and 10^{20} eV in 2μ G fields ... $\geq 4 \times 10^{19}$ eV protons are deviated little by local (galactic) magnetic fields.
- But what if the fields are more extensive or stronger?

Magnetic Fields

- 1. Galaxies have magnetic fields.
 - Protons and nuclei will be deflected by the B ~ 5 μG galactic field.

Larmor radius r = R/cB

M51

- 2. Intergalactic fields may also be significant
 - Clusters (e.g. Coma) have field strengths B ~ 0.1 2 μ G, perhaps extending out along sheets and filaments.

Charged CR directions will be scrambled by B fields. But we can still learn a lot from their <u>composition</u>.

2. Status ... CR average composition

- Average depth of shower maximum (X_{max}) is sensitive to primary cosmic ray *composition*:
 - Interpretation clouded by shower simulation (different curves) uncertainties!
 - To first approximation: nucleus of atomic number A and energy E results in A sub-showers each with average energy E/A. As $X_{max} \propto log(E)$, thus $X_{max}^{Fe} < X_{max}^{p}$!
 - Data trends: intermediate-to-heavy at $\sim 4 \times 10^{16}$ eV to light = proton at $10^{18} \sim 10^{19}$ eV!

2. Status ... when <u>do</u> protons dominate?

- ... on average consensus
- in detail experiments disagree: *e.g.* at 1 Eev = 10¹⁸eV Haverah Park measures *intermediate-to-heavy* composition and HiRes measures *light* = *proton* composition!

2. Status ... new analysis developments!

- KASKADE results ... astro-ph/0201109:
 - 1. With more sophisticated experiments more detailed analyses are possible.
 - 2. One KASKADE analysis has attempted to extract individual element-group fluxes *versus* energy.
 - 3. The results are consistent with *rigiditydependent* breaks in flux for different element-groups.
 - 4. Rigidity-dependent *breaks* would be consistent with CR lifetime/retention limitations in the galaxy.

Unfolding of cosmic ray spectra near the *knee* Note: horizontal-axis units are GeV where $1 \text{ GeV} = 10^9 \text{eV}$

2. Status ... simulations also improve!

- Simulations are needed to link *e.g.* depth of shower maximum (X_{max}) with composition:
 - 1. Several Monte Carlo (hadronic interaction) models are under development to interpret the data.
 - 2. (Systematic) uncertainties remain ...

3. Emerging model ... listen to the data!

Conceptual model for cosmic ray flux ... S. Yoshida and H. Dai, astro-ph/9802294

• Consider a 2-component model:

- 1. KASKADE data consistent with one component for CR-I and CR-II (e.g. galactic super-novas ...)
- 2. Spectrum steepening, at 1^{st} and 2^{nd} knee, from acceleration or lifetime/retention limitations
- 3. **Spectrum flattening**, at the ankle, consistent with a new, CR-III, (2^{nd}) component

Theoretical model for cosmic ray flux ... B. Wiebel-Sooth and P. Biermann, Springer Verlag, Sept 1998 Note: horizontal-axis units are GeV where $1 \text{ GeV} = 10^9 \text{eV}$

- 1. Slope *breaks* at the 1st and 2nd knee follow constant *rigidity* physics observed by KASKADE ... *i.e.* energy features scale in nuclear charge: $E_{Fe} \equiv 26 \times E_p$.
- 2. 2^{nd} break, $E_p \approx 4 \times 10^{17} \text{eV}$, proton Larmor-radius: $\left(\frac{R_p}{1kpc}\right) \approx \left(\frac{E_p}{10^{18}eV}\right) \cdot \left(\frac{1\mu G}{B}\right) \approx \text{galaxy thickness.}$

3. Emerging model ... initial summary!

Cosmic ray (> $4 \times 10^{19} eV$) arrival directions ...

- 1. 1st component: broad *composition* light (p,He) to heavy (Si,Fe,..); may extend to energies $\sim 10^{19}$ eV
- 2. 2^{nd} component: lighter (significant proton) composition; possibly measurable implications to below 10^{18} eV
- 3. Primary motivations for the 2^{nd} component: flattening of the flux above the ankle (~ 4×10^{18} eV) and a change to lower mass composition at the highest cosmic ray energies: above ~ 10^{18} eV
- 4. The primary motivation for identifying the 2nd component as **extra-galactic** is the **isotropy of the highest energy cosmic rays** (strengthened if *light* (p,He))

3. Emerging model ... testable implications!

D. Bergman GZK-model fits to HiRes Flux(E) data

The green curve simulates the galactic flux The red curve simulates the extra-galactic (proton) flux

• Propose a model (e.g. like Biermann model):

- Particle composition, above ~ 10^{18} eV should have two components: $heavy \ge Fe$ from galactic sources and light=p from extra-galactic sources.
- If *light* is truly protons, then the data should show the GZK structure.
- Measure fraction of light (protons) primaries, $f_p(E)$, versus energy.
- Then GZK model predictions can be meaningfully compared to $f_p(E) \times Flux(E)$.

3. Emerging model ... don't skip the fun!

Bachall et al GRB model showing GZK-cutoff, hep-ph/0206217

Even though we would like to ... there is simply not enough data to answer the issues of 10^{20} eV CRs!

- AGASA, Fly's Eye and HiRes have observed (a few) events above 10²⁰eV ... but:
 - What is the detailed shape of the spectrum?
 - What is the *composition* versus energy?
 - Are there arrival direction anisotropies and are there *point source clusters*?

4. Next step ... need bigger and better!

Detection method

Hybrid Fluorescence + Ground Array precision measurements

- The next step ... <u>high quality data</u> are needed from $\lesssim 10^{17} \text{eV}$ to several $\times 10^{20} \text{eV}$:
 - 1. need to link with galactic source(s) measurements
 - 2. need to tune the Monte Carlo (hadronic interaction) models
 - 3. need to constrain the models with much reduced error bars ... especially above $6\times 10^{19} {\rm eV}$
 - 4. In a post-GZK cutoff era, need to look carefully where we expect no signal

4. Next step ... SW U.S. and Argentina!

HiRes Dugway, Utah or Auger Southern Observatory Malargue, Argentina

- **HiRes** ... (now):
 - 1. 2 fluorescence detector sites separated by 12.6km
 - 2. Will run for a few more years
- Telescope Array (TA) ... (in a few years):
 - 1. 25km \times 25km surface detector (SD) array
 - 2. Overlooked by 3 fluorescence detectors (FDs) ... to *resolve* AGASA-HiRes "controversy"
- **Auger** ... (now):
 - 1. 55km \times 55km SD array overlooked by 4 FDs
 - 2. Construction of the full experiment is well underway
 - 3. Data taking simultaneous with construction ... already biggest running experiment!

Auger Sites

Northern site Millard County Utah, USA

Stefano Argirò, "Status ... of the Pierre Auger Observatory"

Auger Project

Surface detector in place.

- Southern site in Argentina
- 1600 water detect., 4 fluorescence.
- > 3,000 km².
- Construction complete in 2006.

Rene A. Ong

SLAC Summer Institute 2003

Current Status of the Array January 23, 2004

199 detectors with electronics out of 287 deployed.

No kit - No data - Alarm - Warning - Running well Acquisition (100%)

The Hybrid Detector Concept

Surface Array

Simple and reliable detectors 100% duty cycle Energy Determination relies on simulation

Fluorescence Detector

Quasi calorimetric energy measurement Tracks directly shower developement 10-15 % duty cycle Sistematics from atmospheric transparency

Combination

Cross Calibration Better control of systematics Superior Angular resolution Independent measurement of

Energy Composition: ρ_{μ}/ρ_{e} , X_{max}

The Surface Detector

Stefano Argirò, "Status ... of the Pierre Auger Observatory"

Air Shower Detectors -Surface Detector Array

Event timing and direction determination

Shower Density Lateral Distribution (simulation)

Detector Signal Density

(equiv. muons/m²

Stefano Argirò, "Status ... of the Pierre Auger Observatory"

Fluorescence Detector

- 30° x 30 ° fov
- Schmidt optics
- 440 pixels
- 1.5 ° Ø pixel
- 12 bit FADC
 10 Mhz f_s ⇒
 < 4 g/cm²
- Digital trigger

corrector lens (aperture x2)

440 PMT camera 1.5° per pixel

aperture box shutter filter UV pass safety curtain segmented spherical mirror

FD Calibration

N Photons at diaphragm \rightarrow FADC counts

• Absolute: End to End Calibration

The **Drum** device installed at the aperture uniformly illuminates the camera with light from a calibrated source (1/month)

- Scattered light from laser beam
- Statistical

Stefano Argirò, "Status ... of the Pierre Auger Observatory"

for the EA

Stefano Argirò, "Status ... of the Pierre Auger Observatory"

Analysis procedures with the FD

this event: initial viewing angle 15°, i.e. large direct Cherenkov contribution iterative procedure, converges in <4 steps; suggested energy here 2e18 eV

Atmosphere

calibrated (movable) light sources cloud monitors

lasers

balloon sondes

Using Horizontal Air Showers

Atmosphere:

1000g/cm² thick vertically 36000g/cm² thick horizontally

⇒ Look for interactions at deep column densities i.e. large zenith angles: $75^{\circ} < \theta < 90^{\circ}$

Tiina Suomijärvi, ISAPP 2003

Neutrino Air Showers / Hadron Air Showers

v : "new" showers

hadrons: "old" showers

Tiina Suomijärvi, ISAPP 2003

Tau Neutrino Detection

- Principle:
 - Interaction length in the earth ~ 300 km at 10^{18} eV
 - Tau time of flight ~ 50 km at 10^{18} eV
 - − 1° below horizon \Rightarrow 200 km of rock
 - Shower maximum ~10 km after decay
 - In practice $85^{\circ} < \theta_z < 95^{\circ}$

AUGER window: 10^{17} to 10^{20} eV

X.Bertou, P.Billoir, O.Deligny, A.Letessier-Selvon

astro-ph/0104452v4 Accepted in Astropart. Phys.

Tiina Suomijärvi, ISAPP 2003

- 5. Summary ... highest energy cosmic rays
 - Cosmic rays are observed by AGASA and HiRes to energies above 10²⁰eV. Low statistics permit interpretation of the spectrum shape as *GZK-like* ... but we can not say for sure.
 - AGASA energy scale may be 20 ~ 30% higher than Fly's Eye, Haverah Park and HiRes. IF AGASA energies scaled down then fewer events > 10²⁰eV but *biggest* events remain.
 - Arrival directions of events $> 4 \times 10^{19}$ eV are isotropic supporting the extra-galactic source of these cosmic rays. AGASA *clusters* interesting ... but could be a statistical fluctuation.
 - Sources of the events above the cosmic microwave background *GZK cutoff* "must" be (relatively) nearby ... but are not yet identified. More data are essential!
 - New data are consistent with light (p,He) primaries at the highest energies. What is needed to make this firm ... *e.g.* can better data and data analyses circumvent hadronic interaction uncertainties?
 - Much larger and more sophisticated *hybrid* experiments are being built! Auger is already running ... and has plans for a Northern observatory to provide essential *full sky coverage*. So stay tuned!