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Abstract 

Lateral and angular distribution functions of the electron showers are 
derived analytically with and without the Landau approximation including 
ionization loss. Tables and the numerical results of these functions are 
presented, and their results are applied to the analysis of high energy cosmic 
ray phenomena. 

Relations between the present theories and the others are discussed 
critically, and it is shown that the other theories can be regarded as 
special cases of our theories. 

§1. Introduction 
§2. Approximations and assumptions made in our calculations 
§3. Structure function under the Landau approximation 
§4. Structure function without the Landau approximation 
§5. Lateral distribution of the energy flow of shower particles 
§6. Applications of our theory to the cosmic-ray phenomena 
§7. Discussions and summary 
Appendices 

I. Approximate formulae for our structure functions 
II. Effect of the variation of the air density on the structure func

tions 
III. Numerical calculations of the structure function near the core 

for the finite incident energy 
IV. Numerical evaluations of IDC(p, q, s, t) 

§ lo Introduction 

Many ingenious works on the theory of electron-photon cascades have 
hitherto been developed, by which the fundamental behavior of cascade 
showers have been made clear to a great extent in last two decades. In the 
earlier stage of the shower study, rather indirect proofs on the applicability 
ot the theory were furnished by comparison of one dimenshiqnal cascad~ 
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94 K. Kamata and J, Nishimura 

theory with experiments of the cosmic rays. 
However the recent improvements of the experimental techniques and 

the accumulation of the data have required the three-dimensional treatment 
of the theory of the cascade showers. The accurate knowledge of the lateral 
distribution of cascade showers becomes indispensable in the analysis of 
extensive air showers and other cosmic-ray phenomena at high energies. 
Several works have been made along this line,ll2l but their applicabilities to 
practical purposes seem to be limited. 

Moliere's lateral structure function3l is the one which has been exten
sively used for comparison with experiment, but the approximations made 
in his theory seem to be inadequate for practical application. The func
tion was derived numerically as a solution of the Landau equation in the 
approximation A.4l For the contribution of the low energy particles, he 
used Arley's approximation, which is known to be inaccurate in the low 
energy side. In addition to this, his function is limited to the region of 
shower maximum, and it is more or less inconvenient for practical appli
cation. 

In the theory of Roberg and Nordheim, 5) the low energy particles 
were treated accurately, but only the second moments of the structure func
tions were obtained instead of the functions themselves. 

Eyges and Fernbach,ll and Chartres and Messel2) obtained the strac
ture fu,nction in a more accurate way, but, as will be shown later, the ap
plicability of their theories is still limited. 

In our previous papers,6l a mathematical method was developed to get 
the solution of the Landau equation including ionization loss. Then, the 
lateral and the angular structure functions of a cascade shower at any 
depth were obtained analytically in the approximation B.4l In this paper a 
further development of our theory is presented, and the theory is further 
extended to get the solution without using the Landau approximation. 

The lateral distribution of "the energy :flow" of shower particles is 
also useful for the analysis of extensive air showers. It is the lateral dis
tribution of the energy density contained in shower particles. The analy
tical solutions are derived, and the numerical calculation is carried out at 
shower maximum. 

Application of our theory is made to the analysis of the extensive air 
showers and the electron showers observed in photographic emulsions. 

For the analysi6 of the extensive air showers, the effect of the varia
tion of the air density on the lateral structure function is calCulated,' and 
the second moment of the lateral structure function thus derived in the 
isothermal atmosphere is compared with the one in homogeneous matter. 

The distribution of shower particles near the shower axis is closely 
r~lat~q to t}l~ cor~ stn,1ctur~ of ~xt~nsiv~ air show~r~. Thu~ th~ ch.aract~:r-
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The Lateral and the Angular Structure Functions of Electron Showers 95 

istic features of the structure function at small distance from the axis are 
carefully examined in Appendix I. 

§2. Approximations and Assumptions made in Our Calculations 

The electrons in a cascade shower suffer the deflection by the Coulomb 
scattering in traversing the matter. Hence the shower spreads side-wise 
when it develops through the matter. The spreads due to the deflections 
in the radiation and pair creation processes are known to be negligible 
compared with the contribution of the Coulomb scattering except at the 
biginning of the shower development. Thus the three dimensional cascade 
theory can be constructed from the one dimensional cascade theory and 
the theory of multiple Coulomb scattering of a particle. For the one dimen
sional cascade theory, we refer to Approximation B in reference 4. 

The details of the approximation B are as follows. 

In this approximation it is assumed that electrons lose their energy 
only through radiation and ionization processes, and photons by pair crea
tion process. Other electromagnetic interactions such as Compton scatter
ing and trident formation by electrons are neglected. 

For the probability of radiation and pair creation processes the Bethe
Heitler cross sections for the complete screening are adopted. Ionization 
loss of an electron is assumed to be independent of the energy of the elec
tron, and is equal to e per radiation unit. 

These assumptions are approximately justified without introducing a 
serious error for high energy particles and for media of low atomic num
bers. Since the limitation of this approximation has been repeatedly ex
plained in many papers,4

)
7

) we will not reproduce it here. 

The probability for an electron of energy E traversing one radiation 
length of matter to emit a photon of energy between Ev and E(v + dv) is 
given in the case of the complete screening by 

(/)(v)dv [1+(1 v) 2 (1-v)(; 2b)]av;v, (2•1) 

where b= 1/ [18ln(183 Z-113)] and Z is the atomic number of traversing 
material. 

The probability, 'fr(u) du, for a photon of energy W traversing one 
radiation length to produce an electron pair, in which the positron has the 
energy between Wu and W(u+du) is given in the case of the complete 
screening by 

(2•2) 

The total probability for pair creation per radiation len?th is defined b~ 
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96 K. Kamata and ]. Nishimura 

a(W)= st-+(u)du, 
me!W 

(2·3) 

and, from the formula (2•2), is given by 

cr(W) =60 = (7 /9)- (b/3). (2•4) 

It should be noticed here that, the above cross sections have the frac
tional forms which does not depend explicitly on the energy of the particle, 
but only on the ratio of the energy of the incident particle to that of the 
secondary particle. We can thus apply the Mellin transformation to get 
the solution of the cascade equation. 

Recently the limit of applicability of the complete screening cross sec
tions at very high energies has been critically discussed by Landau and 
Pomeranchuk.8

) They pointed out that, at very high energy, the path length 
of an electron which is effective in the collision process becomes so long 
that the interference effects of the adjacent atoms should be taken into 
account, and that the cross section should decrease in the high energy 
region. 

Even if the cross section should fall off at very high energies, the 
average energy of shower particles would soon decrease by orders of mag
nitude by the rapid multiplication of particles. Thus these effects, if 
exists any, should concern only the beginning stages of shower develop
ment and the overall behavior should suffer little change. 

Let rc(E, r, fJ, t)dEdrdfJ be the average number of electrons with 
energy between E and E+ dE travelling at an angle (fJ, dfJ) with the 
shower axis at the position (r, dr) at the depth t, and r(W, r, (}, t) dW drdf) 
the corresponding quantity for photons with energy between W and 
W+dW. 

In the electron-photon cascade, the number of electrons with energy 
(E, dE) changes in a given thickness dt by the following effects; 

(a) The photons with energy ( W, dW) at the depth t produce the elec
trons of energy (E, dE) in a thickness dt. The number of these elec
trons is given by 

dEdt 2 s:r(W,t)'[r(E/W)dW/W=dEdt2 J:r(E/u,t)'[r(u)du/u, 

(2•5) 

where '[r(u)du is the differential pair creation probability given by (2•2). 
The equation (2•5) is written in an operational form as 

B'r. (2·5a) 

(b) The electrons in the energy interval (E, dE) escape this interval 
by the radiation loss, and the electrons with energy E' larger than E faH 
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The Lateral and the Angular Structure Functions of Electron Showers 97 

into this interval also by the radiation loss. The net change is 

dEdt[ f~n(E, t)q>(W/E)dW/E+ s:(E', t)q>(E'-E/E')dE'/E] 

=dEdt JI -n(E, t) + 1 
1 v n(E/1-v, t) J q>(v)dv, (2•6) 

where q>(v)dv is the radiation probability given by (2•1). The equation 
is also written in an operational form as 

-A'n. (2•6a) 

(c) An electron loses an amount e dt of energy in a thickness dt by 
the ionization process. Then n(E+dE) edt electrons enter the interval 
(E, dE) and n(E) edt electrons escape this interval. The net variation 
in the number of electrons by ionization loss is 

(2•7) 

Consequently, the variation in the number of electrons can be ex· 
pressed by 

an J1 

1if=2 /(Eju, t)'fr(u)duju 

+ J:[ 1
1 v n(E/1-v, t) J an n(E, t) q>(v)dv+ e aE . (2·8) 

Correspondingly, the variation in· the number of photons can be expressed 
by 

~~ = s:n(Wju, t)q>(V)dvjv-a0r(W, t), (2•9) 

where a0 is the total cross section of pair creation given by (2·4). 
Then, the diffusion equations for the one-dimensional cascade showers 

are given in an operational form as 

~= ·-A'n+B'r+eJ!!':_ 
at aE ' (2·8a) 

(2·9a) 

Let us next consider the lateral and angular variation of electrons by 
the Coulomb scattering in traversing a thickness dt. 

Let a (fJ) dfJ be the probability that an electron is scattered through an 
?n~le (fJ, dfJ) while travellin~ a given thickness. The variation in tht1 
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98 K. Kamata and J. Nishimura 

number of electrons in the spatial and angular intervals (r, dr) and (fJ, dfJ) 
is obtained as follows. 

(a) An electron at a position (r, dr) travelling in the direction 8 with 
the shower axis suffers the lateral displacement fJdt in thickness dt. Then, 
an electron at r at the depth t will be at r +fJdt at the depth t + dt. 
Hence 

n(t+dt, r, 8) =n(t, r-fJdt, 8) 

= rc(t,r,8) -8dt-!; . (2·10) 

(b) An electron travelling in the direction (8~ dfJ') at the depth t will be 
scattered into (8, d8) by the Coulomb scattering. Then the variation in the 
number of electrons within an interval (8, dfJ) caused by the scattering 
while travelling the thickness dt is given by 

dt[J :~(8-8')n(8')d8'- J :~(8')dfJ'n(8) J, (2·11) 

or, in an operational form, by 

a'n. 

Thus the basic diffusion equations for the three dimensional cascade 
theory are: 

an 
A'n+B'r+a'n-e aE , 

:~ +8 :~ = C'n -a0r. 

(2•12) 

(2·13) 

The probability for an electron of being scattered by the Coulomb field 
of a nucleous, assuming the point charge distribution, is approximately re
presented by4

) 

a(fJ)dfJ= 4rc ln (I1rz=-i73)-( -~s )

2 -:!-' (2·14) 

·where Es=2n(137) 112meC2 =21MeV. 

The finite size of the nucleous and the screening of the Coulomb field by 
the outer electrons, will make the probability smaller than that given by 
the formula (2 •14) for large and small {} respectively. Thus, Williams9

) 

approximated the probability as follows: 

<!(8)d8 0 
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The Lateral and the Angular Structure Functions of Electron Showers 99 

and 

where 

a(fJ)dfJ=O 

Omin 7;.ja, 

Omax= 7;.jd, 

and 2nit is the de Broglie wave length of an incident electron, d the radius 
of the charge distribution of the nucleus, and "a" the Bohr radius of the 
atom. 

Comparison of this expression with the experimental data was made 
by Stanford group.10

) Although this approximation is only a crude one, we 

take this expression to start with in the treatment of the spread of an 
electron shower. 

Following Williams, n(t, (}' +fJ) is expanded in the Taylor series of (}', 
and the formula (2·11) then becomes 

dt[ J ~oo {n(fJ) + fJ'P e n(fJ) + (~t P~n(fJ) + ·'·}a (fJ')dfJ' 

J ::CO)a(IJ')dfJ']. (2e 15) 

Because of the axial symmetry of the scattering probability, the second 
term in the series in (2·15) vanishes. The third term is equal to the 
mean square angle of the scattering, i.e., 

f 
00 

(fJ') 2a(fJ')dfJ' =2 J Om~x(0') 2a(0')2nO' dO' 
-oo Omm 

(Es/ E) 2 Bmax 
= ln(181Z-113) ln- Omin , (2•16) 

where Es=21 Mev. 

. Omax ( Z 1 ) Tak1ng ln--.-= ln 181 -1 3 , 
Omm 

as given by Williams, the formula (2•16) 

1 
becomes T(Es/ E) 2

• 

Then the equations (2•12) and (2•13) become 

( a fJ a ) A' B' ' Es2 ~ 8n 
at+ 8r n=- n+ n+a r+ 4£2 J7en+e-8E' (2•17) 

( ~ +fJ ~ )r C'n-aor· (2·18) 

These are referred to as the Landau equations. Those witbou~ the 
above expansion for the scattering are referred to as the equations "without 
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100 K. Kamata and ]. Nishimura 

Landau approximation", the detailed deGcription of which will be given in 
a later section. 

§3. Structure Function§ under the Landau Approximation 

A) Mathematical treatment 

In our previous paper,6
l a mathematical method to get the analytical 

solution for the angular structure function of shower particles was present
ed. Similar treatment is also possible for the lateral structure function, 

although it was not presented there. Thus, it seems desirable to give the 
details of this method in this section. 

As shown in the previous section, the Landau equations including ioni
zation loss is given by 

(3ol) 

(3•2) 

In order to get the solution of these equations, functional transforma

tions are used as in many problems of the similar type. Multiplying the 

both side of the equations (3•1) and (3•2) by exp (i(rx) +i(fJ,)) and 

integrating with respect to r and fJ, we get 

( a a ) f A'f B' E s2(2 f a f at -x a' = + g-4][2 +e fiE ' (3•la) 

(3•2a) 

where f and g are the Fourier transforms of rr: and r, which are defined 
by 

+eo 

f(x, ') -4~2 f J s J rr:(r, fJ)ei<rr¥l+i<6'i:ldrdfJ, 

+co 

g(x, ') 4~2 s s s s r(r, fJ)ei(rr¥)+i(9t;;)drdfJ, (3·4) 

and the vectors x and ' have the components (x1, x2) and ((1, ( 2) res
pectively. 

Eliminating g from the above equations we get 
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The Lateral and the Angular Structure Functions of Electron Showers 101 

Since the lateral structure function of electrons rr2CEo, E, r, t) 2rr:rdr 
+oo 

is given by rr2= J J rr:(E0 , E, r, 8, t) 2rr:Od0, it follows directly from the for-
-oo 

mula (3·3) and (3•4) that 
+oo 

rr2CEo, E, r, t) = J J e-uq(Jr>f(x, O)dx J ~f(x, 0)]0 (xr)2rr:xdx, (3•6) 

where lo is the Bessel function, and X (X~ +X~ r\: and r = (yi + YD!. 
Similarly the angular structure function is given by 

(3•7) 

Thus we have only to get the solution of f(x, 0) from equation (3•5) 
in order to obtain the lateral structure function. We can not, however, put 
<:"=0 immediately in equation (3·5), because in this equation there exist 
the derivatives with respect to <:'. Taking the direction of the vector <:' to 
be parallel to x, the equation for the function f(x, (h C2=0) is given by 

Here we introduce the variables t; and t' defined by 

t=t' 

and 

Then, we have 

The equation (3•8) now becomes 

{ :;,2 +(A' +ao)-~l'+ (A'ao-- B'C')} f 

=( :t' +ao)[ --ff~~-(t;-t') 2 +e ~E-]f. (3·9) 

As shown by Landau Rumer,m one-dimensional cascade function 
under the boundary condition corresponding to a single incident electron of 
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102 K. Kamata and J. Nishimura 

energy Eo is given by 

where all notations are the same as those in reference 4, and sis a complex 
variable and the path of integration runs parallel to the imaginary axis. 

This is just the solution of equation*) 

{a~: +(A' +ao) :t + (A'a0 - B'C')} /=0, 

which is given by putting Es and e zero in the equation (3·9). Thus, we 
get the solution of the equation (3•9) in a successive manner, i.e. in a 

£2 2 
po'Yer series of 4~ and (ejE), and it is given by 

1 JllHoo( E )s ds { "" "" ( /2=-2-. ~. _o - ~ ~ 
4n t ll-ioo E E m-n 'n=O 

where ¢m, n is given by the equation 

with 

A, B and C are defined by 

and 

A' E-<s+2m-rn+1) = E-<8+2m+n-t-l) A ( s +2m+ n), 

B' E-<s+2m+n+1) = E-<s+2m+n+1) B ( s +2m+ n)' 

C' E-(8+2m+n+1) E-(S+2m+n+1)C ( s +2m+ n)' 

A(s)=( ~ +0.027)( ;s lnr(s+1)+0.5772-1+~5-~ 1 ) 
1 1 

(s+1)(s+2) ' 

B(s) = 2( s!1- (s+~~~~+3) ) ' 

1 1.360 C(s) =--+---;-~ 
s+2 s(s+1) ' 

do 0.7733. 

*) Hereafter we write t instead of t' for brevity. 

(3•11) 

(3·12) 

(3•13) 

(3•14) 

(3•15) 
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The Lateral and the Angular Structure Functions of Electron Showers 103 

The numerical values of A(s), B(s) and C(s) are given in reference 4. 
(J)o,o satisfies the following equation 

Then it follows that 

and 

do+ ii2 (s) 
il1(s)-il2(s) ' 

il1 (s) =+[ -( A(s) +do)+ {( A(s) -do r +4B(s)C(s) l ~], 

(3·16) 

(3•17) 

(3•18) . 

Further (3 •16) satisfies the boundary conditions 

0o,o(S, 0) 1, 8(J)o,o(S, t) I = _ A(s) , 
at c-o 

(3•20) 

corresponding to the shower initiated by a single electron of energy E 0 • 

The solution of equation (3•11) is now given by the recurrence for· 
mula: 

0m, n(S, ~ -t, t) = Jtmo,o(S +2m+ n, t- t') { (~ -- t') 20m-1, n(S, ~ -t~ t') 
() 

+ (s+ 2m+n)mm, n-1 (s, ~ -t~ t')} dt'. (3•21) 

This can be proved simply by substituting (3•21) in (3•11). From the 
formulae (3•20) and (3•21), we find 

2nr ( s + m + n + 1) tsm+n 
fJm,n-::5 I tPo,o(s, t) l3mr(s+ 1)r(m+ 1)r(n+ 1) 

-;S I tPo,o(S, t) l2s( 4/3)m8ntsm+n 

for any values of s and t, in which I t/Jo,o(s, t) l is the largest value of t/Jo,o(S, 
t') in the region where t' varies between 0 and t. 

Then it follows that the double series in (3•10) is uniformly and 

absolutely convergent if E> Es;t-f and E>Bet, and the above argument is 

merely a general extension of the one given by Bhabha-Chackrabarty.l2) 
Now, as was shown in our previous paper, we introduce the Mellin 

transforms, Wc2 (p, q, s, t), of the function F(a, {3, s, t) and put 
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104 K. Kamata and J. Nishimura 

tPrn,n(S, t) 
rcn£+"1)r(n+1). 

Then the double series in (3•10) can be written as 

~ = ( E~x2' )m( s )n 
~0 ~0 4E 2 E tPrn, n(S, t) 

""' E 2X 2 8 

= J J e --a 4E2 
-

13
E F( a, {1, s, t) dad£1 . 

0 

(3•23) 

(3·24) 

Moreover, it follows by the inverse Mellin transformation that the formula 
( 3 • 24) becomes 

""' "" ( E~x2 )m( s )n 
~n~ - 4E 2 E tPm,n(S,t) 

00 

= _:__. 
1-JJ dad{1e 

4rc2 
() 

Since the double series is uniformly and absolutely convergent for 
' .. ·,·., 
: ,·) '! ~ ' 

E> E:t- and E>Bet, we can change the order of the integrations under 

these conditions. Then we first integrate with respect to {1 in (3•25). 
Next applying the inverse Bessel transformations and integrating with re
spect to a, we get finally 

1 J+fi""J ( Eo )s 1 , E ) 2 

8rc4i dsdpdq -r y( Es 
-i= 

( )q( E2 2 )-P-1 
x ; E~ r(p+1)r( -q)SJJC2CP, q, s, t). (3·26) 

B 

Exf2 
The restrictions E> 3 and E>Bst can be dropped now, beca.use (3•26) 

exists for any value of E and r. Now it can be stated that (3•26) is the 
exact solution of the differential lateral structure functions for any value of 
E and r derived by the principle of analytic continuation. The expression 
for the integral lateral structure function, I12 (E 0 , E, r, t), i.e. the lateral 

structure function for the electrons with energy larger than E, is obtained 
by the integration with respect to energy, and given by 

too 

_ _ 1 sss dsdpdq (Eo )s! E )2( e )q(E2r2)-P-l 
II2 (Eo, E, r, t)- 8rc4i s+2P+q E- \ Es E E~ 

-ioo 

xr(p+1)r ( q)Wl2CP, q, s, t). (3•27) 
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The Lateral and the Angular Structure Hmctions of Electron Shower8 105 

At the limit for E 0, the integration with respect to q is equal to 

the residues of the integrands at q= --s-2p, and we have accurately 

ioo 

1 ss ( E )s( e )2( e;2y2 )-P-1 
112 (E0 , 0, r, t) =- 41t'3 dsdp ---;!-, Es E~ 

-.ioo 

x r(p+ 1)r(s+2P)W'c2(p,-s-2p, s, t). (3·28) 

Total number of the electrons is now obtained by the mtegration of 112 

with respect to r, and we find 

f"" , 1 s (Eo )s 
0 

112(E0 , 0, r, t) 2rrrdr= 
2

rri ds -e- r(s)W12CO, -s, s, t), (3·29) 

wihch is the same expression as that obtained by Snyder13) in the one

dimensional shower theory. 
Similar treatments are also possible for the analytical solutions of the 

structure functions for photons, which are sometimes important for the 

analysis of the spread of extensive air showers detected by the apparatus 

under a thick absorber. It can be shown easily from the equation (3•2), 

using the transformation (3·9), that 

g(x ,C=O)= lim Jtc'e-ao(t-t')f(x, C:t=X(~-t), C2=0)dt. 
(!;-t)~O 0 

(3·30) 

Similar expressions to (3·26), (3•27) and (3•28) are obtained for the 

differential and integra] structure functions, r2 and r 2 respectively, for 

photons. 
At the end of this section, we summarize the. results satisfying various 

initial conditions. 

B) Analytical solutions. 

(a) Structure functions at depth t for the shower from a primary 
electron of energy Eo 

(1) Angular distribution functions for the electrons and photons 

_1 s
1

""ss (Eo )s_!_(~)2(-~)q(E2_f!:.)-P-1 

8rr4i dsdpdq E E Es E . E~ 
-ioo 

xr(p+1)r( -q)WC1(p, q, s, t), (3•31) 

xr(p+1)f'(s+2P)"JJCl(p, -s--2p, s, t), (3·32) 
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106 K. Kamata and J. Nishimura 

where IDC1 is given by 

with 

[~: + {A(s+2P+q) +t1o{ :t + A(s+2P·+q)ao- B(s+2P +q) 

xC(s+2P+q) J~J11(p,q, s, t) 

( :t +t1o) {pSJJ11(P-·1, q, s, t) + (s+2P+q)qSJJ11(p, q-1, s, t)} 

(3•33) 

(3·34) 

1 stsoos (E \8 1 ( W)2( e )q(W282)-·P-1 
r 1 (E0, W, 8, t) = . Sn4[ dsdpdq -w-)- W E;, W ~ 

-ioo 

xr(p+l)r(-q)SJJ~~(p, q, s, t), (3·35) 

ico 

1 ISS 1 (Eo )s( W) 2
( e ')q r1(Eo, W, 8, t) = ·- 8n4i dsdpdq s+ +q, W,. Es \ W 

-i"" 

(w282)-v-1 . · 
X E; r(p+l)r( -q)SJJC~(p, q, s, t), (3·36) 

where 

(3·37) 

(2) Lateral structure functions 

The expressions for n2, ll2, r2 and r 2 are obtained by substituting r, 
ill12, and IDC~ in 8, SJJCh and IDC~ in the expressions for nh ll 1' r1 and r 1 

respectively. Here 

and 

IDC2(p, q, s, t) lim M(p, q, s, t, ~ -t), 
(~-t)-?0 

IDl~(p, q, s, t) = J: C(s+ 2p +q)e-<To<t-t'> M(p, q, s, t, t- t') dt', 

[ :t22 +{A(s+2P+q)+t1o} :t +A(s+2P+q)ao-B(s+2P+q) 

x C(s+2P+q) ]Mcp, q, s, t, ~ t) 
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The Lateral and the Angular Structure Functions of Electron Showers 107 

with 

=(:t +aa){PC~ t) 2M(p-1,q,s,t,~ t)+(s+2P+q) 

xqM(p, q 1, s, t, ~ t)} (3·38) 

(3•39) 

(b) Structure functions at depth t for the shower from a primary 
photon of energy W o 

(1) Angular structure functions 

The expressions for ntCWo), llt(Wo), rt(Wo) and r1(W0 ) are obtained 
by substituting W 0 , 9?1 and SJc~ in E 0 , SJJC1 and SJJC~ in the expressions 
(3•31), (3·32), (3•35) and (3•36). Here SJC1 satisfies the same equation 

with wch but the boundary condition is given by 

(3•40) 

and 

SJC~ ( p, q, s, t) 

(3•41) 

(2) Lateral structure functions 

The expressions for n2(Wo), 1I2(Wo), r2CWo) and r2(W0 ) are obtained 
by substituting r, W0 , SJC2 and SJC~ in 0, Eo, ill11 and ill1~ in the expressions 
(3•31), (3·32), (3•35) and (3·36). Here 

SJ(2(p, q, s, t) =lim N(p, q, s, t, ~-t), 
(i;-t)~O 

SJC~(p, q, s, t) = J~C(s+2P+q)e-ao<t-t')N(p, q, s, t, t-t')dt' 

r(p++) 
+lim a-:v+qe-aot 

s~o,; n r(p+ 1) (3•42) 

and N(p,q,s,t,~-t) satisfies the equation (3·38). The boundary condi-

tion is given by 

/V(O, 0, s, t, ~ t) 
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108 K. Kamata and J. Nishimura 

Now a{) the analytical expressions for the structure functions are obtain
ed under the various boundary conditions, all the problems concerning the 
spread 9f cascade showers can be treated within a limit of our approxi
mations'. 

For instance, the expression of the structure function near the core 
can be derived easily from the above formulae by using the poles appear
ing the ·integrals with respect to p. Integration with respect to s is per
formed by the saddle point method. Then the structure functions near 
the core are given by 

1 
1r2 ----_--,;;-2-

y2-s-3 

1r2 --constant 

for 2-s-~>o 
3 

for 2 s ~<o 
3 

where s is defined by the equation 

with 

with 

with 

(}). 1f)~s)t I-s +ln(Eo/E)+ln(Er/Es)=O, 

1 112,_, __ 
y2-8 

112 --constant for 2 s<o 

f)). 1f)~)t 1
7 

+ ln(E0/e) + ln( er / Es) =0, 

1 
. r2"" r2-s for 2-s>o 

r2 --constant for 2 s<o 

r ,_, _-_ln=-r_ 
2 y2-'i for 2-s>o 

r 2.......,constant tor 2-s<o 

) 
in Approximation A, 

(3··43) 

(3•44) 

Approximation B 

(3•45) 

(3•46) 

} 
in Approximation A 

(3•47) 

Approximation B 

(3·49) 
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The Lateral and the Angular Structure Functions of Electron Showers 109 

At the limit for E 0 -'>oo, all s's here defined agree with the shower 
age usually used in the one-dimensional shower theory. The behavior of 
the structure function near the core derived by Moliere, Pomeranchuk and 
MigdaF4l can be said to be included in the above formulae as the parti
cular cases and further details of our functions near the core will be dis
cussed in Appendix III. 

C) Numerical results. 

Since we are most interested in the integral structure function of elec
trons, the method of evaluation of the complex intergral (3•27) is shown 
as an example. Similar treatments are also possible for the evaluation of 
other structure functions. 

It is sometimes convenient to introduce the normalized structure func
tion, which is defined by · 

Pn (Eo 0 r t)= ··~ 02--
2 ' ' ' f"" 

0 
II22rcrdr ' (3·51) 

so that 

J~ Pn
2 
(Eo, 0, r, t)2rcrdr= 1. (3•52) 

It follows from (3•28) and (3•29) that 

(3·53) 

For the sake of simplicity, here we treat a limiting case in which 
Eo/e-'>oo. In this case, the integral with respect to s can be carried out 
by the saddle point method independent of the integral with respect to p. 
Hence, ( 3 • 53) becomes 

Pn
2 

( oo, 0, r, t) 

2~2{S:1P( i; rc~ )-p-r(p-t-1)r'(s+2p)IDC2(p, -s-2p, S, t) 
r(s)WC2(0, s, s, t) 

(3·54) 

where s is the shower age and is defiend by 

(3•55) 
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110 K. Kamata and 1. Nishimura 

lOr-·----~--------r---------------r-------------~ 

lQ-4 j----------l----__,. ........... ....,....._-J---~~t------J 

lQ-5 ~--------------~----------------~--------------~ 
0.01 0.1 1.0 10 

EriEs 

Fig. 1. Normarized integral structure functions, ( ~ r-2 

Ph2, at a few different 
ages in the approximation A. (See Table 1, p. 113.) 

Ph2 is normarized as 

J""( Er )8
-

2 
, ( Er ) ( Er ) -- Pn22.,. ---- d -- =1, 

o E8 E.~ , Es 
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The Lateral and the Angular Structure Functions of Electron Shower~ 111 

The integral with respect to p can also be evaluated by the saddle point 
method. Writing 

eu(s:p.o=r(p+l)r(s+2P)Wl2(p, -s-2p, s, t), 
the saddle point p is determined by the equation 

-2ln(er/ Es) +-~u(~/' t) 0. 

Then we get 

0' 

r-r-- ... 
~ 1 10-

' '" t\ 
1\ 
~ 

10-2 

10-3 

10-2 10-l 
r!rt 

r\ 

1.0 

Distance from the shower axis in Moliere units 

(3·56) 

.,. 

S=0.6 

" y 

~ 
\ 
\ 
\ 

~ 

\ 
I\ 

\ 

1\ 

\ 

~ 

Fig. 2. Normalized Lateral Structure Function for s=O. 6 in Approximation B. 
Moliere unit is rt =Eli/ e caseate units. 
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112 K. Kamata and J, Nishimura 

(3·57) 

Sl'nce Wl2(p,-s- 2p, s, t) d au d t 1' . 1 d d "t '' an -- o no exp 1c1t y epen on as IDl2CO,-s, ~;, t) ap 
shown in Appendix IV, it may be convenient to express the structure func
tion by Prr2 ( oo, o, r, s) instead of the expression Pn2 ( oo, o, r, t). 

The numerical results of the normalized distribution functions are pre
sented in Tables 1 and 2, and the behaviour of the integral structure 

(r!rt)H1 Pn2 

1.0 

10-1 

10-2 

lQ-3 

lQ-4 

lo-s 

"' y 

·--- -
10-2 

...... p:: 

~ 

10-1 

r/n 

·-·-1-

~ 
~ 

1\ 

Moliere 
I I I 

Ours 

S=l.O 

' 

~ 

.\ 

\ 
\ 
\. 
\\ 
~ 

~ 
\~ 
r\ 

1.0 

Distance from the shower axis in Moliere units 

1'\ 
IV 
\I\ 

I' 
\ 

fi~. 3. Normalized Lateral Structure Function for s=l. 0 in Approximation R 

~ 
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The Lateral and the Angular Structure Functions of Electron Snowers 113 

Table 1. 
Integral Structure Functions P fi2 of Electrons in the Approximation A. PTI:

2 
is defined 

by Pn~=( {:-)
2

-

11

Pn2 , and is normalized as J~( f£-Y- 2 Pfr~27t( ~~ ~a({; )=1. 
·-~·-

EriEs 0 0.01 0.03 0. 1 0.3 1.0 3.0 

P'n2Cs=0. 6) 0.38 0.34 0.27 0.17 0.05 0.0044 0.00009 
Pi:r2 (s=l. 0) 1. 01 0.91 0. 70 0.37 0.15 0.019 0.00065 
Pir2(s=1. 4) 2.5 1.9 1. 35 0.68 0.27 0.041 0.0019 
Pn2Cs=2. O) lim( -0.53 2.5 1.8 0.99 0.37 0.60 0.37 

~~-).0 X ln Es) 

-

~ - r-f,... -- - --
t"--r-. 

~ 

lQ-1 

' !'-.... 1:4 s 
~ 

"1\ 
1\ . \ 

\ 
\ 
1\ 

\ -· I ' 
\ 

' 1\ 
' 

10-S \ 

·-
L\ 

11 

f 

10-2 10-1 1.0 10 
r/rx 

Distance from the shower axis in Moliere units 
Fig. 4, Norrnali?ed Later<\l Struct4re f4nctjon for s=l. 4 in Appro~imatiqn B, 
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114 K. Kamata and J. Nishimura 

functions for a few different shower agee. are shown in Figs. 1, 2, 3, 4, and 
5 comparing with the Moliere function. 

10 -------,-

r--. 

1.0 

10-2 

lQ-3 

10-• 
lQ-3 

- -r-
r--: .... r-r-
~ .... 

.. 
--

--

-
10-2 

r 

I--t--+-
I 

--

-· ---
.... 

" 

10-1 

r/r1 

" ~ 
'\ 

I 
S=2.0 

1\ 
~ 

\ 
\ 
\I 

\ 
\ 
\ 

---f-+-- ·····--

\ 
\ 

-·-- ~--- -----· 

- ---

1.0 

Distance from the shower axis in Moliere units 

\ 
1\ 

Fig. 5. Normalized Lateral Structure Function for s=2. 0 in Approximation B. 

-· r--

.,_ 
+ 

\ -I-
, I_ 
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The Lateral and the Angular Structure Functions of Electron Showers 115 

Table 2. 

The Normalized Lateral Structure Function (r/r1) 2-8Pn2(r/r1, s) for s=O. 6, 
1. 0, 1. 4, and 2. 0 in Approximation B, where r1 = Es/ e: cascade units. 

~~I 0.6 1.0 1.4 2.0 

0.001 1. 95·10-l 4. 4 ·10- 1 8.5 ·10-1 2.4 

0.003 1. 90·10-l 4.2 •10- 1 8. 0 ·10-1 1.92 

0.01 1. 81·10-l 3.9 ·10- 1 7.1 ·10-l 1. 40 

0.03 1. 58•10- 1 3. 4 ·10- 1 5. 8 ·10-l 9. 3 ·10-1 

0. 1 1. 34·10-l 2. 65·10-l 3. 8 ·10-l 5. 3 ·10-1 

0.2 1. 08·10- 1 2. 03•10-l 2. 6 .lQ-l 3.2 ·10-1 

0.5 4.9 •l0- 2 1. 09·10- 1 1. 22·10-J 1. 21·10-l 

1.0 1. 35·10- 2 4.1 ·10- 2 5. 0 ·10- 2 4. 4 ·10- 2 

2.0 2. 64•10- 3 8. 8 ·10-3 1. 48·10- 3 1.18·10"2 

5.0 2.16•10- 4 7. 7 ·10- 4 1. 55·10-4 1. 32·10-3 

§4. Structure Function without the Landau Approximation 

In the preceding section, we were limited only to the structure function 
in the Landau approximation. In the Landau approximation higher moments 
of the R11therford cross section are all neglected. Thus the contributions 
of plural and single scattering are not included in this approximation, and 
the structure function thus derived will seriously be in error at the tail of 
the structure function. 

The approximation made in the Williams theory9l for the multiple 
scattering of a single charged particle just corresponds to this Landau 
approximation, in which Williams obtained the wellknown Gaussian distri
bution for the lateral and the angular structure functions. The function, 
however, does not agree with the exact one which is obtained without the 
Landau approximation not only at the tail of the distribution function but 
even in the small angle region.15) 

Similar deviations have also been found in the angular structure func
tion of the electron shower which was obtained by Chartres and MesseP) 
without using the Landau approximation. Their treatment, is however, 
limited to the angular structure function at the shower maximum in the 
approximation A. 

In this section, a theory without use of the Landau approximation is 
formulated, in which the contributions of the single and plural scattering 
are included. The treatment is based on Moliere's15 ) scattering theory for 
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116 K. Kamata and J. Nishimura 

a single charged particle. 
As was shown in §2, the variation in the number of shower particles 

in the interval (fJ, dfJ) by scattering is given by 

J+oo f+"" 
-~(fJ-fJ')n:(fJ')dfJ' -- -~(fJ')n:(fJ)dfJ'. (4·1) 

Multiplying ei~~6 ) by the expression ( 4 •1) and integrating it with res
pect to (} from 0 to oo, we get 

- J ~ ]o( CO) n:(O)fJdfJ J ~ [1-- ]o( Co)] a(fJ')2n:fJ' do', ( 4 ·2) 

where we have made use of the symmetry property of n: (fJ) around 
the shower axis. As has been shown in §2, the scattering probability is 
approximately given by the formula 

within the region between Omin and Omax· 

As in Moliere's theory, we now take into account only the screening 
effect by the outer electrons, and divide the integral, (4•2), in the following 
two parts: 

S ""a(fJ) [1- ] 0 ( CO)] OdO= f co+ f 90 

, 
o eo o 

(4·3) 

where 00 is an angle of the order of Omin· The first terms of the right
hand side of (4•3) can be integrated by parts and gives; 

_________ l ____ (Ji£)2 f =[1 ]o(Y)] _!}y_ 
2ln (181 Z- 113 ) E !:"eo y 3 

=-sli1CtiJ.z=i73)( ~' Y[cc!oY2{1- loCCOo)} 

+ ](COo) + f"" fo(Y) dy] 
COo {;'Oo Y 

= Sln(liiz-1/sf( ~'-)
2 

[1 + ln2 lnC:Oo c+O{(C:Oo) 2
} J, (4•4) 

where c=0.577 .... is Euler's constant. 
For the second term in ( 4 • 3), Moliere put 
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The Lateral and the Angular Structure Functic ns of Elcclton Showers 117 

f eo rc(2 s eo a(fJ)2rcfJdfJ [1- / 0 ((0)] = ---- (J2a(fJ)fJdfJ 
0 2 0 

1 ( EsC ) 2
[. · 1 ] 

8ln(181Z-113) ~ lnXa+lnfJo 2 . (4·5) 

For the actual determination of Xa., Moliere obtained this value by 
using the scattering cross section for the Tomas-Fermi potential. Then, he 
gets 

(4·6) 

where a is the well-known parameter, 

a=Ze2/nc. 

Then from (4•2), (4·3), (4•4) and (4•5), we get 

SQO = 8ln(1g1Z-l/3)- --~~~-c--~--+ln 2 c-ln(XaC) J 
= ~~~~-{ b --ln-1f~-2--], (4•7) 

where E~ 2(ln 181Z-113) 112 (4·8) 

and b = 1-2c --- In a I ( 
XE )2 
Es • 

(4·9) 

As can be easily proved, (E~/ XaE) 2 is the approximate number of 
collisions of an electron passing through the matter of thickness of one 
cascade unit, and then b is approximately equal to its logarithm. Further
more, as Xa is inversely proportional to E, XaE in the formula (4•9) is 
independent of E, and b is only the function of the traversing material. 

Now, as done in Moliere's theory, we introduce a new parameter, !J, 
defined by 

!J-ln tJ=b. 

Then the formula (4•7) becomes: 

(4·10) 

where we put 
K=tJ1/2E~. 

Then the diffusion equation of the structure functions without use 
EK 2 

of the Landau approximation is given only by replacing 4 E2 by 
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118 K. Kamata and J. Nishimura 

f ~ x a~ r + (A' +ao )( :{ x a~)+ (A'ao B'C')} f(x, c:") 

=(: --x ~-+ao){- ~;-: ( 1- ~ ln ~;-: )+e ai} f(x,c:"). (4•11) 

This is the basic equation for the structure function without the Landau 
approximation, and the numerical values of K and !J for the several 
traversing materials are shown in Table 3. 

Table 3. 

materials c AI Fe Pb Gs Emulsion Air 

z 6 13 26 82 

K (MeV) 19.2 19.4 19.5 19. 1 19. 7 19.3 

!J 15.4 14.9 14.3 12.9 14.0 15.2 

The solution of the equation (4•11) can now be obtained in the similar 
way as in the preceding section. As an example, we present here the 
der: vation of the angular structure function in the approximation A. 

Putting e=O and X=O in equation (4·11), we get 

L'f= ~~~
2 {1- ~ -ln ~~~

2 )!, (4•12) 

where f is the Bessel transform of the angular structure function, and 

(4·13) 

As we did in §3, we first put 

_ 1 f+ioo( Eo ')s ds "" oo _ n( K2(2 )n+m( 1 K2(2 )m 
f--4 . -E -E 2J 2J( ) 4E2 ~ln 4E2 ·o/n,m, 

71:t -too n-o m-o r);a 

(4·14) 

and substitute the above formula in (4•12). 
Since 
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The Lateral and the Angular Structure Functions of Electron Slwuers 119 

where 

L(s+2n+2m) a 1 
( :t +..t1(s+2n+2m) )( ~ +..t2(s+2n+2m) ). 

at +ao 

Putting n+m=N and ( ;n,)m-zL(s+2n' +2m) =L<m-n, (4•15) can be 

written as 

Now we change the order of the triple summations appearing in the 
above formula. As 

ooNm ooNN 

2J 2J2J = 2J 2J 2J, 
N-o m=O t-o N-o z-o m-l 

the formula (4•16) becomes 

00 N N-l ( 1 . S+l(- K2(2 )N( ~2J ~ -) -·-~ 
n-O z-o mt-o E 4£2 

where we have replaced m l by m'. Comparing the formula (4•17) with 
the right-hand side of the equation ( 4 •12) and equating the coefficients 
multiplied by the products of respective powers of _4:;-=_and ln(ff

2
C

2
) 4£2 4£2 ' 

we get the relation: 

(4·18) 

Now, we write the series solution, ( 4 •14), as 
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120 .K. Kamata and 1. Nishimura: 

and put the Mellin transform of F(a, 8) as 'im1(p, u). Then, since 
00 

'im1(p, u) J J aP8uF(a, 8)dad8, 
0 

we get the relation 

P(p+1)r(u+l)'o/p,u='iml(p, u), 

by equating the formula (4•14) to (4•19). 
The difference equation difining 'im1 ( p, u) is 

~NCn(- ~ rL<n>(s+2P+2u)'iml(p-n, u+n) 

=P 'im1C P 1, u) +u 'im1(p, .u-1), 

.(4•20) 

with appropriate initial conditions for WC(O, 0), which is easily obtained by 
substituting the formula (4•20) in (4·18). 

The inverse Bessel transformation is made as follows. First, we make 
use of the relations of the inverse Mellin transformation: 

F(a, 8) (4·22) 

Substituting the above relation in ( 4 •19) and expanding 
/3 Kz{2 K2'2 

+7i 4E 2 In 4E2
- into the power series of 1 as 

(4·23) 

we perform the inverse Bessel transformation. 
Then we get the angular structure function 

rc
1 

n<O) + __!_ n<t) + _1~n<2) + ... 
1 !J 1 !J2 1 ' 

(4·24) 

where 

.,.,.(0)_ 
'"1 -

1 sis"" ( E )s 1 ( E )2(E2o2 )-v-t 4ns dsdp Eo E K K2 . r(p+1)'imt(p,O,s,t), 

and 

,.(1) 
'"1 

-ioo (4o25) 
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Tlte Lateral and the Angular Struct1tre Functions of Electron Showers 121 

s £2()2 } 
X !'o/CP+2) +'o/( -p-1) -ln---:1(2 SJJl:1(p, 1, s, t). (4·26) 

The series solution, (4•24), just corresponds to the one given by 
Moliere in his scattering theory for a single charged particle. 

As in Moliere's theory, the first term of the series (4·24), i.e., n<o>, 

represents the spread by multiple scattering of electrons when they are 
traversing the matter, and in fad it is just the same function as the solu
tion (3•31) derived under the Landau approximation except for the slight 
differences in the definitions of K and sm. 

The second term of the series, ( 4 • 24), is the contribution by the 
single scattering and some of the plural scattering. Thus it gives a less 
contribution than n<o> near the shower axis (1/ t2 times smaller than n<o>), 
but it predominates at the tail of the structure function. At a large distance 
from the shower axis, nW can be developed in a series of power of 1/0. 

Integration in (4·26) with respect to p is carried out under the con-

dition of -1{--~1, using the poles of CP+l)"it'(- p 1) at P=O, 1,'2,···, 

and the formula becomes; 

(4•27) 

The first term of the above series represents the effect by the single scat
tering, and gives just the same function as that obtained by Eyges16

> in 
his genious theory for the calculation of the effect by the single scattering 
in an electron shower. 

A similar argument can also be made for the lateral structure function. 
In this case we have only to replace o and SJJC1 by r and SJJl:2 respectively 
in which the definition of SJJl:2 is shown at the end of this section. 

Numerical calculations of the integrals in the formula (4·24) are car-

ried out, and it can be proved that the series ( 4 • 24) converges very ra
pidly. Summation up to the second term is sufficient for the practical 
applications as in Moliere's theory. Numerical results are shown in Fig. 6 
comparing with those obtained in other theories. 

The other structure functions, such as the lateral structure function in 
the approximation B, can be obtained in the similar way as shown above. 

At the end of this section, we summarize the analytical solutions for 
the various structure functions obtained without the Landau approximation. 
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122 K. Kamata and J. Nishimura 

1. Angular structure functions for electrons and photons in the 
approximation B 

The structure functions are expanded as follows; 

(4•28) 

(4·29) 

II1eE0 ,0,fl,t)=Il~0>+ ~ 1Ii1>+·••, (4·30) 

where n 1 and r1 are the angular structure functions of electrons and 

photons with energy (E,E+dE) and (W, W +dW) respectively as defined 

in §3. 

and 

These structure functions are given by; 

.,.1<o) 1 s+sioos ( Eo )8 1 ( E )2( s )q( E2fl2 )-.v-1 
'" -- 8n4i dsdpdq -E- E K E ][2 

-ico 

X rep+ 1)r( q)SJJC1(p, 0, q, S, t), (4•28') 

rl" S~i sTs dsdpdq( ~ r /¥( ~ y( -w-)'( u;;~· r-, 
-ioo 

x rep+ 1)r( -q)SJJC~ep, o, q, s, t), ( 4·29') 

X rep+ 1)r(2p+s)SJJC1(p, 0, s-2p, s, t), (4·30') 

1 s+s-t""s ( E )8 1 ( E )2( E2fJ2 )-P-2( e )q 
n?> = 8n4i dsdpdq\ _Eo . E K ][2 E 

-i= 

xr(p+2)(P+1)r( -q) 

x {teP+2) ++e- p-1) -In( ~~
2 

)}smlep, 1, q, s, t), (4·28") 

<l> _ 1 s+si""s ( Eo )s 1 ( W )2 W2
fJ2 )-P-2( s )q 

r 1 - 8n4 i dsdpdq W W K ~ K 2 W 
-ioo · 

xr(p+2)(p+1)r( q) 

x{+CP+2)+'t(-p-1)-ln( ~~
2 

)+ :p ln
1

C(s+2P+2+q))} 

X Wc~ep; 1, q, s, t), ( 4•29") 
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10 

1.0 

10-2 

lo-a 

10-4 

lo-s 
0 1.0 

---·---

EO p <o>+ EO p <t> K nt QK ITt 

Angular structure function without 
the Landau's approximation 
(Chartres and Messel and ours)* 

Angular structure function under 
the Landau's approximation 
(Moliere, Eyges and ours) 

Single scattering theory by Eyges. · 

2.0 
EO!K---+ 

3,0 4.0 

Fig. 6. Normarized differential angular structure function, Pn1 (s=l), in the 
air in the approximation A. 
Pn1 is normarized as 

Sco27C_l£O d EO Pn
1 
=1 

o K K 
with K=19. 3 MeV and !J=l5. 3. 

* The difference between Chartres's curve and ours is so small that 
it can not be represented in this figure, 
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124 K. Kamata and J. Nishimura 

x r(p+2)T(2p +2+s) (p+ 1) 

x [ {rCP+2) +'ir(-p-1) In(!;%:--) +2'fr(2p + s+2)} 

x ilJl1(p, 1, -2p s-2, s, t) -2-!-fiJJC1(p, 1, q, s, t) 1 J, ( 4 ·30") vq q--2P-S-2 

where SJJ11 and WC~ are defined by 

and 

P ( 1 )n E:Cn T L<n)(s+2P+2u+q)WCl(p-n, n+u, q, s, t) 

= pWC1CP 1, u, q, s, t) +u9Jc1(p, u-1, q, s, t) + (s+2P+2u+·q) 

2 xqWCl(p,u,q 1,s,t)- pqW1(p-1,u+1,q-1,s,t), (4·31) 

W~(p, q, s, t) = J: C(s+2P+2u+q)e-cro<t-tl)ffi11(p, q, s, t)dt' (4·32) 

with following boundary conditions. 
For the shower from a primary electron 

(4•33) 

and for the shower from a primary photon, 

(4·34) 

2. Lateral structure functions for electrons and photons in the 
approximation B 

The structure functions are also ··expanded as shown above:, and are 
given by: 

..... _...,.(0)+ 1 ...,.(1)+ ••• 
••2- ··2 T'"2 , (4•35) 

1 
r - r<o> + r<l) + ... 
2- 2 Q 2 ' (4·36) 

II -lJ<O) + ~lJ(l) + ... 
2- 2 !J 2 ' (4•37) 

where rc 2 and r 2 are the structure functions of electrons and photons with 
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The Lateral and the Angular Structure Functions of Electron Showers 125 

energy (E,E+dE) and (W, W+dW) respectively, and ll2 the lateral 

structure functions of total e 1ectrons. 

TheGe functions are given by: 

x r(p+ 1)r( -q)91~2(p, o, q, s, t), (4·35') 

co>_ 1 s+si""s ( Eo )s 1 ( W )2( e )q( w2r2 )-11-1 
r2 - 8n4i dsdpdq W W K W K~ 

-ioo 

x r(p+ 1)r( q)~~(p, o, q, s, t), (4·36') 

xr(p+1)r(2P+s)~2(p,o, -s-2p,s,t), (4·37') 

and· 

<I> ___ 1 s+st""s (~)8_!_( _§_)2( E2y2 )-P-2(-e )q 
n2 8n4i dsdpdq E E \ K K2 E 

-ioo 

xr(p+2) (P+1)r( -q) 

X {"frCP+2) +'o/( -p-1) (4·35") 

<1> _ 1 f+Jtoof ( Eo )s 1 ( W )2( W2r2 )-P-2( e )q 
r2 - 8n4i dsdpdq W- W K K2 W 

-ico 

xr(p+2)(P+1)r( -q) 

X {"frCP+2) +'o/(-p-1) -In( ~;2

) +a~ In( C(s+2P+q+2) )} 

x~~(p, 1, q, s, t), (4 ·36") 

x r(p+2)r(2p+s+2) CP+ 1) 

X [ { 'o/ ( p + 2) + 'o/ ( - p -1) In ( ~;;: ) + 2"/r ( 2 p + s + 2)} 

a J x ~2Cp, 1, -2p-- s---2, s, t) -2-a ID~2CP, 1, q, s, t) 1 , 

q q- -2P-2-$. 
(4·37") 
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126 K. Kamata and J. Nishimura 

where IDC2 and sm~ are defined by 

with 

and 

~6cn(- ~ r L<n)(s+2P+2u+q)M(p n, n+u, q, s, t, ~ t) 

p(~·-t)2( 1-Lln (~ -t)2)lv!(p 1, u, q, s, t, ~- t) 
' Q 

+u(e: t) 2M(p, u 1, q, s, t, ~ -t) 

+ (s+2P+2u+q)qM(p, u, q-1, s, t, e:-t) 

2 -QpqM(p 1,u+1,q-1,s,t,~-t) 

ill12 (p, u, q, s, t) =lim M(p, u, q, s, t, .;: -t) 
(~-t).,..O 

ill(~ s: C(s+ 2P+ 2u+ q)e-ao<t-t') M(p, u, q, s, t', t t')dt' 

(4·38) 

(4·39) 

(4·40) 

with the same boundary conditions as just given by the formulae ( 4 •33) 
and (4•34). 

§5. Lateral Distribution of the Energy Flow of Shower Particles 

The recent advance of the experimental techniques makes it possible 
to observe the lateral distribution of the energy flow of extensive air show
ers. Several works along this line have been published17) to date, and new 
information on the structure of the extensive air shower will be obtained 
from these experiments. 

The general trend of the lateral distribution of the energy flow may be 
expected to be as follows: 

Take an electron shower with shower age s, then the differential 
spectra of electrons and photons are approximately given by 

dE/ ES+l, (5•1) 

where E is the energy of these particles. 
Since the average distance R of the particles with energy E from the 

shower axis is approximately given by 

R=K/E, (5·2) 

the energy spectrum (5•1) results in the distribution of R 

(5·3) 

This is the lateral structure function of the shower particles, 
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The Lateral and the Angular Structure Functions of Electron Showers 127 

On the other hand, the differential spectrum of the energy of these 
particles is 

(5•4) 

Then the lateral distribution of the energy flow of these particles is approxi
mately given by 

RdR/R3
-

8
• 

This shows that the lateral distribution of energy flow is 1/ R times steeper 
than that of the partic1e number. This is due to a simple fact that the 
particles with high energies are less scattered from the shower axis. 

Quantitative calculation can be made as follows. Let II E2rcrdr and 
r w2rwdr be the lateral distributions of the energy flow of electrons and 
photons respectively. They are represented by the following formulae: 

liE= J~ dE.Erc2(E 0 , E, r, t), 

rw=J: dW Wr2CEo, W,r,t), 

(5•6) 

(5•7) 

where rc2 and r 2 are the lateral structure functions defined in §3. 
Integration with respect to E in the formulae (5·6) and (5•7) yields, 

xr(p+l)r(s-1+2p)WC2(p, -2p-s+l, s, t), (5·8) 

l'w 

xr(p+l)r(s 1+2p)ffic~(p, -2p s+l,s,t). (5·9) 

It is sometimes useful to represent II E and r w in terms of the structure 
function, II 2, given in §3. 

The average energy of the electrons at a distance r from the shower 

axis is given by ll8 and we put 

and 

Numerical <;alculations of /fe and g,"~ are carried out at the shower 

 at U
N

A
M

 D
ireccion G

eneral de B
ibliotecas on M

ay 17, 2016
http://ptps.oxfordjournals.org/

D
ow

nloaded from
 

http://ptps.oxfordjournals.org/


128 
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10 

.5 
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1.0 
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2 

rlr1 

ge Cr/r1) 

g1 Cr/r1) 

' ' ' ' ' 

0 

0.15 

0.21 

' ' ' ' ' ' ' ' 

K. Kamata and J. Nishimura 

Table 4. 

0.01 0.4 0.1 1.0 2.0 

0.15 0.12 0.14 0. 14 0.20 

0.26 0.45 0.82 0.83 1.8 

TIE+rw €ii;----

' ' ' ' ' 

rw 
------ ellz 
______ _fu_ 

' ' ' ' ' ' ' ' ' ' 

ell2 

' ' ' ' ' ' ' ' ' 

I 

4.0 

0.30 

3. 7 

l0-1 --------~------~------~------~--------~------L---'~~----
O.Ol 2 5 0.1 2 5 1.0 2 

r/r1 

Fig. 7. The relation. b~tween energy and the number of electrons at the shower 
m,a~imum a:? a functi()n of the distanc;:e from the sh()wer axis, 
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The Lateral and the Angttlar Structure Fuuctinns of Electron Showers 129 

maximum, and the results are shown in Table 4. 
This shows that g is almost constant near the shower axis; thus ge 

and gy are approximately given by 1/rs-s as predicted in the beginning. of 
this section. 

At a large distance, however, ge and gy increase nearly in proportion 
to the distance from the shower axis, thus the average energy of the 
shower particles remains almost constant in this region. The result may 
be interpreted in the following way. The mean free path for the pair 
creation of the photons remains almost constant for all over the energies. 
Thus low energy photons can travel up to a large distance from the shower 
axis, and the electrons lying in this region are produced from these low 
energy photons. These low energy electrons can travel only a short distance 
because they lose their energies by the ionization process. As a result the 
average energies of the shower particles at varying distances from the axis 
remain constant, and photons are much more accumulated at a large distance 
from the core compared with the electrons. 

§6. Applications of Our Theory to the Cosmic Ray Phenomena 

1. Application to the electron showers observed in nuclear emulsions 

The recent developments in the nuclear emulsion techniques have 
made it possible to observe the full development of the high energy elec
tron showers in a large stack of emulsion. 

Electron showers observed in emulsion are started by a photon or an 
electron, or two r rays from a rr0 meson in a jet produced in the stack. 
Thus the energy determination of the shower is important not only for the 
study of the pure electron showers but for the study of the high energy 
nuclear interactions. 

Electron showers in emulsion are observed under a microscope usually 
over an area along shower axes extending to several hundred microns from 
the axes. For example, the K. Pinkau18) adopted the following way. The 
energies of individual electrons are measured by the scattering method, and 
the energy spectrum of electrons within the circle of a radius r from the 
axis is obtained. 

As shown already, high energy electrons concentrate near the core. 
Then, if we take the circle of a certain radius r, most of the particles with 
energies larger than a certain value, i. e., of the order of K I r, are lying 
within the circle. Thus, if we limit ourselves to such high energy electrons, 
they are treated by means of the linear cascade theory in the approxima
tion A. He applied this method to several showers observed in G stacks 
(12" x 16" G5 emulsions), and could determine the energy of an incident r 
ray or electron, 
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130 K. Kamata and J, Nishimura 

Another approach to the energy determination of electron showers can 
be made by making use of their transition curves as follows. As the radius 
r is at most several hundred microns, r I K is much smaller than the re
ciprocal critical energy. Thus, in this case, we can apply the approximation 
r::r I K <{1 to the expression ( 4 • 37) for ·the lateral structure function, and 
.the number of electrons within a radius r is expressed as 

2rr:rdrll2= 2nrdr11~0>+- 2nrdrll~1>+···, I r sr 1 Jr 
0 0 !2 0 

(6·1) 

where 

J: 2nrdrll~0> _21 . J+t"" !!!__( EKor )sr(1--2s )wc2( _2s , 0, 0, s, t) nz -too s 

and 

J: 2nrdrll~1 > = 4~i J::: ds( ~ yr( 1 + )[ ~( 1 +T) 
xwc2( -1- ~, 1, O,s,t)- 8~sm2(p,1,0,s,t) IP=-~-+]· (6·3) 

It should be remarked that E and r in the above formulae always ap
pear as a combined product ErIK, not as separate variables. This makes 
the expression very convenient for making practical applications. 

The numerical calculations of the above expressions for the shower of 
an incident r ray are carried out, and the results are shown in Table 5. 

Table 5. 
Number of electrons of a photon-iniciated-shower within a circle of radius r in 
emulsions calculated without the Landau approximation. 

E : energy of the incident photon 
t :depth in emulsions measured in cascade units. 

1 C. U. =2. 83 em in G5 emulsions. 

~ 5·103 104 2·105 5·104 105 2·105 

lC. U. 1.8 2.15 2.45 2.8 3 0 3.2 
2 4.0 5. 7 8.5 12. 1 15.1 18. 1 
3 5.3 8 .. 2 12.6 20.6 29.5 41. 0 
4 5. 7 10.2 18.2 33. 7 52.0 79.0 
5 4.6 9.5 19.0 39.0 67.0 110 
6 2.6 6.4 14.5 34.0 66.0 125 

8 1.0 3.0 8.5 25.0 55.0 120 

The table displays the behavior of the, transitiop. of the 1?-V.ffi.ber of e,lect~on§ 
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The Lateral and the Angular Structure Functions of Electron Showers 131 

within a radius r, and therefore gives the lateral distribution of electrons 
under a . certain cascade unit. 

Comparing the observed transition curves with our theoretical curves, 
we can determine the energy of the electron showers without making any 

N 

100 

io 

N 
--+-

100 
Number of ele-

ctrons within 

a circle of 

radius r p, 

10 

_._ 

103 

Our theoretical curve 

Experimental data by Pinkau 

• 

3C.U. 

_I_ 

104 105 

N 

100 

10 

106 Gevp. 

7C.U. 

105 Gevfo 

Eor 

Fig. 8. Comparison of our theoretical curves with Pinkau's data. Depth quated 
here is measured from the point of incident p:lir electrons. 
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132 K. Kamata and J. Nishimura 

tedious scattering measurement of the particles. 
In Fig. 8, comparison is made between Pinkau's data and the theoretical 

curves, and the agreement is fairly good. 
An extensive application of our theory to the electron showers in ernul~ 

sion was made in the so~called "Emulsion Chamber project "19) which was 
carried out through collaboration of several laboratories in Japan. The pro
ject was made to study the dynamical properties of high energy jet showers 
in cosmic rays. 

The illustration of 
the chamber is in Fig. 
9, in which the materi
al of the low atomic 
number is put in the 
upper half of the cham~ 
ber as the producing 
layers of the jet show
ers, and the high Z 
material below as the 
detection layers of the 
electron showers from 
a produced n° meson. 

If a jet shower is 
produced in the upper 
half of the chamber, 
the r rays from n° 
mesons generate the 

. electron showers in the 
detection layers after 
penetrating through 
the low Z rna terial 
layers without any ma

Type A. 

20cm 

Carbot! lOcm 

4cm 

Empty Space 

I' 

Lead 6cm 

Fig. 9. Illustration of the emulsion chamber. 

terialization. Then, we can observe separately individual electron showers 
which have started from individual r rays resulting from mesons, because 
the spatial separation among these r rays becomes large by traven::.ing a 
certain distance from the production point of the jet to the detection layers. 

The energies of r rays are measured by comparing our theory with the 
observed transition curves of the number of electrons within a circle of radius 
r 'under the successive lead plates, an example of which is shown in Fig. 
10. 

Once we observed the electron showers with a distinct double core struc
ture, and if it is clear that they are due to two r rays from a reo meson, 
then we can make an . independent test of the precision of our theories. 
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No. of 
electrons 

40 

20 

10 

4 

40 

20 

10 

4 
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4xl011ev 

1 xl011ev 

2. 8 x10t1ev 

1. 4xl011ev 

0. 7xl011ev 

4 5 6 c.u. 

Theoretical curves 

Experimental data 

Fig. 10. 
Comparison of our 
theoretical curves 
with experimental 
data obtained with 
the Emulsion Cham· 
ber. Comparison is 
made for the number 
of electrons within a 
circle of radius 25 IN· 

Using the kinematical relation between the opening angle of the two r rays 
from a 77:

0 meson and its energy, we can get information on the energies of 
these r rays. The energies thus determined are compared with those 
estimated from their cascade transition curves, and, as shown in reference 
19, the agreement is quite good. 

2. Application of our Theory to the Extensive Air Showers 

As is known, electron showers observed in an extensive air shower 
start from many 77:

0 mesons which are produced at each step of a nucleon 
cascade in the atmosphere. ·Thus our structure function should not be com· 
pared directly with that observed in extensive air showers. 

The electron showers having many sources distriimted in space can be 
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134 K. Karnata. and J. Nishimura 

treated in the following way. 
First we consider a simple case in which 77:

0 mesons are produced only in 
the shower axis and decayed r rays run in the same direction as the axis of 
the air showers. 

Let F(Eo, t) dEodt be the number of such r rays with energy (E0, Eo 
+ dEo) that decayed from the 77:

0 mesons produced at the depth between t 
and t dt cascade units below the top of the atmosphere. Then the struc
ture function II at the depth T is given by 

If= J~ dEo s: dtF(Eo,t)II2(Eo, O,r, T-t). (6·4) 

Substituting the formula (3·28) in (6•4), and integrating with respect 
to Ea and t, we get 

II""""' LF(s, T)f(r, s)e>-1<s>T, (6•5) 
where 

(6·6) 

and f(r, s) is the structure function of shower age s, s being defined by 

(6·7) 

The absorption mean free path of these particles, L, at the depth T 
can be derived from the equation (6•5), and it is given, using (6•5), by 

(6•8) 

As LF is a monotonously increasing function of T, we get from (6·8) 

(6·9) 

Taking 150-250 gr/cm2 of air as the observed valuse of L at mountain 
altitudes, 

A1 (s)S: -0.15----0.25. 

Then we have 

s21.2 ....... 1.4. 

Now, it becomes evident that the structure function in this case can 
be represented by that of a single cascade with shower age s, which is· 
determined with the aid of the absorption mean free path L at such a 
large distance from the axis that the spread of the parent particles can be 
neglected. 
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+"' ·a 
:::1 

:>.. 

At the center of air 
showers, the spread of main 
sources can no longer be 
neglected. The observed 
structure function deviates 
from that of the single 
cascade, and from this devi~ 
ation the magnitude of the 
spread of main sources can 
be estimated. 

;.. 
t\1 
+"' 
:E 

$... 
t\1 

.s 
(f) 
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] ... 
;.. 
t\1 
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;.. 

~ 
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~ 
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.f: 
00 
~ 
Q.) 

"C 

~ 

£ 

100 
! Experiment 

50 - Theor. curve 
for\ s = 1.4 

30 

20 

10 

5 

3 

2 

1 
lQ-2 2 3 5 10-I 2 3 5 10 

Distance from the core in Moliere unit 

Fig. 11. Comparison of Structure Function with 
Experiment. Experimental results were 
obtained at Pamir Mountain (3860) by 
Soviet group, and the solid line represents 
the structure function for 4. 

Comparison of the one 
observed by. Soviet group20

> 

with ours is made in Fig. 
11, and this deviation ap
pears within a few meters 
from the shower axis. 

Mathematical treatment 
including the source spread 
can also be made by using 
the Bessel transforms, as
suming the shape of this 
spread. 

From the spread of 
these main sources, we get 

information on the transverse momenta of high energy reo mesons, the 
values of which are estimated to be ranging from 100 Mev /c to 1000 
Mev /c for re 0 mesons with energies 1012 1013 ev. 

Along the line of such considerations one of us (]. N) has pointed out 
the importance of the properties of the transverse momentum by referring 
to the data obtained with emulsion. 

§7. Discussion and Summary 

Three dimensional cascade theories here presented are based on the 
approximation B with and without the Landau approximation. Thus the 
theories are developed with fewer physical assumptions than any other 
theory. It is pointed out that the structure functions of the number and 
the energy density of the shower particles near the shower axis are well 
approximated by 1jr2-s and 1/rs-s, where s is the shower age of the cascade. 

The theories are applied successfully to the analysis of the lateral spread 
of the extensive air showers and the electron showers observed in large 
stacks of emulsion. 
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136 K. Kamata and J. Nishimura 

It seems worthwhile to examine the relation between our theories and 

several other theories. 

1) Moliere's theory3 > 

The Moliere function was the first one that has been extensively used 

for the analysis of the structure of extensive air showers. In his, theory, 

Moliere started from the Landau equation in the approximation A. After 

the Fourier transformation of this equation, the solution at s = 1 was obtain

ed in a form of power series of x2n. The series are just the same as our 

solution (3•10) at s=1 in section 3. 

He approximated this series by 

a a 1 

where a, a, and {3 are constants and are given by 

a=3.473 

a=1.05 

{3=0.912. 

(7•1) 

Applying the inverse Fourier transformation to the above, he got the 

lateral distribution in the approximation A at shower maximum (s 1). 

The contribution of the low energy particles was taken into account by using 

Arley's approximation. As is well known, the number of particles with 

energies smaller than the critical energy is evaluated to be too small in 

this approximation than iri the exact theory. Thus, his theory would give 

us the steeper lateral structure function, because the contribution of the 

scattering is inversely proportional to the energy of the particles. 

In spite of the above differences between the approximations made in 

the two theories, his function agrees quite well with ours at s 1 as shown 

in Fig. 3. 

2) Roberg and Nordheim's theory5> 

In their ingenious treatment, referring to the one dimensional cascade 

theory, they have derived the expressions of <r2n>av. and <o2n>av. in 
integral forms. 

The equivalence between their theory and ours, can be proved as 

follows: 

As shown in § 3, <r2n>av. and < fJ 2n>av. in our theory are represented 
by; 
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The Lateral and the Angular Structure Functions of Electron Showers 137 

(7·2) 

(7•3) 

Since 

and 

SJR1(p=n, q=O, s, t) 

=n J :sml(p=n-1, q=O, s, t')SJJ~1CP=O, q=O, s+2n, t-t')dt', 

(7•4) 

SJR2 CP= n, q o, s, t) 

n f :SJR2(0, 0, s+2n, t-t') (t t') 2M(n 

they give 

1, 0, s, t~ t-t')dt'' 

(7•5) 

t 

1,0,s,t', t t')dt' 
( 

E ) 2n SJR2(0,0,s+2n,t t') (t t') 2M(n <r2n>av.=n!n Es ~~-----=::::---cc-:::---·=-----:----------. 

and (7·6) 

1, 0, s, t') dt' 

(7·7) 

These expressions are just the same formulae as those given by Roberg 
and Nordheim. 

For the numerical calculation they have used cross sections for the 
radiation and the pair creation somewhat different from ours. The results 
of their numerical evaluation in comparison with ours are shown in Table 
6 and the agreement between these two is fairly good. 

3) Eyges and Fernbach's theory1
> 

At first, they have derived the recurrence formulae of <r2n>av. and < fJ 2n> av. from the Laundau equation in the approximation A. The structure 
functions were constructed using the moments which were derived from the 
above recurrence fomt:~.lae. Afterward, the contribution of the ionization loss 
is also taken into account in an approximate way. 

As SJJl2CP) and SJJll(p) have close connection with <r2n>av. and <fJ2n>uv. 
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138 K. Kamata and J. Nishimura 

Table 6. Mean square average of the structure function for s=l. 0. The 
comparison of Roberg-Nordheim's results (abbreviated as R-N in 

Table 6) with ours. Here, 

E!e 

00 

10 
7 
5 

3 
2 

1.5 

1.·o 

0. 75 
0.5 
0.4 
0.3 
0.2 
0. 15 
0.10 
0.05 

f"" 1C22rcrdr 
• 0 

<r2>av. 

R-N Ours 

0. 642( ~-y o. 723( z; r 
0.49 0.58 

0.46 0.53 

0.43 0.46 

0.40 0.36 

0.33 0.28 

0.30 0.22 

0.25 (~Ly 0.15 ( ~8 y 
0.28 0.21 

0.39 0.32 

0.46 0.40 

0.60 0 .. 53 

0.86 0.82 

1. 13 1. 02 

1.6 1. 31 

2.8 l.58 

<r~>av. 

R-N Ours 

o.214(~Y o. 241c ~ r 
0.18 0.20 

0. 17 0.18 

0.16 0. 17 

0.14 0. 14 

0. 125 0. 11 

0. 105 0.090 

( E r 0.085--;- . o. 064( ~8 r 
0.12 0.087 

0. 165 0. 125 

0. 19 0. 16 

0.235 0. 19 

0.31 0.26 

0.48 0.31 

0.46 0.39 
0.64 0.53 

and as our difference equations for WC(p) with positive integer p have just 
the same forms with their recursion equation, it may easily be seen that 
their treatment is included in our theory as a special case of our theory. 

4) · Messel and Green's theory21 ) 

They have pointed· out the importance of the higher moments of scat
tering angles in the Rutherford cross section. Then, they set up the equa
tion including (K5C2/4E 2

) + (K!(2/4E 2 ) 2 + ... ,instead of using (E~(2/4E2) 
in equaiion>(3 ~ 5). 

In their general approach, they have also calculated in the approxima
tion A the second moments of the structure function of the cascade deve· 
loped in the isothermal atmosphere. 

In our theory, the higher moments of the Rutherford scattering angles 
are taken into account in the structure function derived without the Landau 
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The Lateral and the Angular Structure functions of Electron Showers 139 

approximation. 
The second moment of their structure function in the isothe:rrnal.ai:r, juM; 

coincides with ours as shown in appendix II. 

5) Green and Bergmann's theory22> 

The behavior of the differential structure function near the cOre 'Of 
Moliere's as well as of ours is represented by 

in the approximation A. On the other hand, in their treatment without 
the Landau approximation, Green and Bergmann proved that the singulari
ty is expressed more exactly by 

· ( O(r) 1 ) A ---+B-+Clnr r r , 

where A, B, and C are the function of t. 
They have also stated that the different behaviors presented by other 

theories are due to the different approximations used by respective authors 
and; consequently, that Moliere's function and ours give incorrect behaviors 
near the core. 

It can be proved, however, that the singularity remains to be the 
same as in formula (3·43), even if we take the structure function without 
the Landau approximation derived· in §4. The behavior near the core is 
mainly determined by the following two reasons. 

(1) At the first stage of the development of the cascade showers, the 
thickness of the traversed matter is thin enough, so that the particles are 
scarcely scattered. Then the particles remain near the cor~ without suffer
ing fhe scattering. 

(2) The ancestors with higher energies, which are less .scattered from the 
core, produce more particles. As a result particles accumulate near the core. 

It can be shown that the singularity presented by Green and Bergmann 
is in fact due to the former reason, (1), while ours is due to the latter, 
(2). 

Since the cross section of the Rutherford scattering is so large ·that the 
probability without suffering any scattering is much reduced after travers
ing the proper thickness of material. Thus the singularity due to the rea
son (1) is practically less important in an actual case, even if the order of 
singularity of the structure function due to (1) is higher than th(;lt which 
is due to the reason (2). 

In fact, for the showers under the proper thickness, say twenty cascade 
vnits or so, it can be proved that the absolute value of our structure func-
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140 K. Kamata and J. Nishimura 

tion is much larger than that obtained by themselves for r>1o-s mm in the 
air at a mountain altitude. 

In conclusion, the authors express their appreciation to Prof. Y. Fuji
moto and Prof. S. Hayakawa for their stimulating discussions throughout 
this work, and to Prof. ]. M. Blatt, Prof. K. Greisen and Prof. H. Messel 
for their kind and valuable comments on this work. The authors are also 
indebted to the members of the air shower group in Japan for their helpful 
discussions, and Mrs. H. Aizu and Mr. A. Tachib:.Ina for their numerical 
culculations. 

Appendices 

I. Approximate Formulae for our structure functions. 

Since the evaluation of our structure functions requires the long and 
tedious numerical calculations as stated in Appendix IV, it will be very con
venient to set up a simple asymptotic formula for the practical applications. 

The following formula, f(r/r 11 s) was derived from the numerical re
sults of Pu2 (r/rl, s) illustrated in Figs. 2, 3, 4, and 5; 

c(s) [1 + (4/s) ryjr )Je-a<s)<rlrl)b<s) 
(r/r1)2-s " 1 ' 

which is normalized as 

where 

1 b(s) =0.15 + -
1
-, 
+s 

c(s) 

(1•1) 

(1•4) 

CI·5) 

The numerical values of a(s), b(s) and c(s) are tabulated in Table 7. 

Table 7 

s 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

a(s) 9.6 5. 76 4.61 4.16 4.00 4.00 4.12 4.32 4.62 5.00 

b(s) 0.984 0.864 0. 775 0. 706 0.605 0.650 0.566 0.535 0.507 0.483 

c(s) 0.042 0.101 0.189 0.306 0.462 0.64 0.87 l. 20 1. 68 2.30 
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The values c(s) for the large s listed in Table 7 are somewhat different 
from the values given in the fromula (1·5), because the formula (I•l) 
does not accurately represent the structure function for r/r1~l, which gives 
a considerable contribution to the integral (1·2) for the large s. 

The formula for s= 1.0 shows a quite good agreement with Bethe's ap
proximation formula derived from the Moliere function which is given by, 

(r/r1) 2-8/(r/r~, s) 

1.0 

v 

---
10-1 

10-2 

10-3 

10•4 

lQ-3 

t--1-..... 1- ... .. -. . 

10-2 

1-.. 

--··-

···~ ....... 

10-1 

r!r1 

... . . f-.;-
---1-1-

~ 

' ...... 

~· 

(1•6) 

~Exact ca icula
1

t ion. 
--~T-LLll 
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··' ·,. 
'. 

~ 
f-1--- .. • 1-1- .. 
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' 'r-: 
\ \ 

' \ 

\ 
\ I~ 

"~ 

1\ 
1(. 
~ 

1.0 
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Fig. 12. Asymptotic Formula of the Structure Function for s=O. 6. Dotted line 
represents the exact calculation, dashed line Greisen's formula, anq 
~olid line our formula~ 
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It should be noted that the formula is not applicable in the case in 
which the primary energy is not infinitely large when compared with the 
mean energy of shower particles and the details will be disccussed in 

Appendix III. 
Recently the following formula has been proposed by Greisen,23> 

(1•7) 

where c(s) is the normalization factor. His formula is simpler than ours, 

but our formula CI·l) has a wider applicability than his formula. 

(r!rt) 2-sj(r/rt, s) 
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The Lateral and the Angular Structure Functions of Electron Showers 143 

The numerical results of our asymptotic formula are illustrated in Figs. 
12, 13, 14 and 15 comparing with Greisen's formula. His formula agrees 
well with our formula for 0.6<s<l.O but deviates from ours for 1.4<s::S2.0. 

II. Effect of the variation of the air density on the structure func· 
tions. 

So far we have been limited to the calculation of the structure func-
' tion only in the homogenious matter. In actual cases, however, the exten-

. sive air showers develop in the atmosphere; hence variations in the density 
of air with height should be taken into account in the calculation. 

It is plausible to consider that the observed shower particles are mainly 
(r/ri) 2-8f(r!r1, s) 
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Fig. 14. Asymptotic Fmmula of the Structure Function for s=l. 1, 
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deflected in air between the observation point and the point that lies one 
cascade unit above that in the space, because the ancesters of these particles 
have much higher energies at higher altitudes, and they are less scattered 

(r!rt)2-11f(r!rt, s) 
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The Lateral and the Angular Structure Functions of Electron Showers 145 

compared with the observed particles. This consideration led Janossy to 
point out that, if we are to make comparison between experimental data 
and the structure function calculated in homogeneous matter, we should 
take the air density at a point of one cascade unit above the observation 
point. 

Messel and Green21 ) have treated this problem in a quantitative way, 
but they were limited to the structure function in the approximation A. 

Here we formulate the equations for the structure function in inhomo
geneous matter. The Landau equations in homogeneous matter are given 
by equations (3·1) and (3•2), which are replaced, in inhomogeneous mat
ter, by 

[ a p(T) (.o a '] A' B' Es 17 arc -+--- - TC=- rc+ r+--Jierc+e---
f)f p(t) , 8r 4E2 BE ' 

(II•l) 

. [ a , P(T) to a J C' f.if' p(tf-\ 8r r~= rc aor. (II•2) 

In these equations p(T) and p(t) are the density at the depth T and t 
cascade units respectively: T is the depth of the observation point and r 
is measured by the length of the cascade unit at T. 

a (. a ) The operator fit+ fJ-
8
-,: for homogeneous matter is now replaced by 

a p(T) ( a ) at + ---()([)- \ () ar . 

For the isothermal atmosphere, we may put 

p(T) _ T 
p(t) - --t-. 

(II•3) 

(II•4) 

Here, as shown in §3, after the Fourier transformation it is now useful 
to introduce the following new variables, t;, and t, instead of using the 
Eyges transformations, defined by 

t: = xT (In~ -lnt') , 

t'. } (II • 5) 

a T ( a ) a Then, we get 1ft -t- X·ac:- = at' ' Landau's equation for the isothermal 

B-tmosphere is now given by 

E;x2-T2 (ln~ -lnt') 2 +e-f!_ -]1 4E2 BE ' 
(II· 6) 
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The solution of this equation is identical with the structure function 
for the constant air density except the different definition of We, which is 
given in this case by 

L(s+2P+q)M( p, q, s, t) ( :t' +ao) {pT2 (ln~ lnt') 2M(p 1, q, s, t) 

+ (s+2P+q)qM(p, q 1, s, t)} (II•7) 

with 

illC=lim M. 
~-t..;..Q 

In order to get the solution of the diffusion equation, we first develop 
(ln; -lnt') 2 as 

(1 ~-1 t')2= (~ t') 2 (1+. (~ t') 11 (~ t') 2 +~ (~ t')3+···) 
n n ~2 ~ + 12 ~2 6 ~3 • 

(II•S) 

If we develop IDC as 

me lim T2( meo_ + mel + .. ·)· 
~-?T ~2 ~3 ' 

(II ·9) 

then ill'C0 is just the same function as the one obtained in homogeneous 
matter. 

The consequence corresponds to the fact that the structure function in 
the isothermal atmosphere is, as a first approximation, given by the structure 
function in homogeneous matter with the density at the observation point, 
because the series (II ·9) converges very rapidly. 

As was shown in §7, <r2>av. is proportional to me(p=1), then from 
the series(II·9) .it may be approximated by 

< 2> ,____ T 2ill'co(P 1) 
r av. ( we! )2 

T-
zmeo . 

(11·10) 

. we 
Then we should measure the length by cascade unit at Zwlo cascade unit 

above the observation point for making the comparison between the theore
tical curve and the experimental data. 

As was shown in the paper of Bhabha-Chakraberty12\ the exact solution 
of equation (II • 7) for p n, q 0 is given by 

me(p n,q 0) <\i~)~s:WC(O,O,s+2n, T t)7 2 (ln~ lnt) 2 

xM(p n 1, q 0, s,t)dt, (II ·11) 
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which may be interpreted as the general extention of the Roberg-Nordheim 
formula, and which also corresponds exactly to the solution given by Messel 
and Green. 

The numerical calculations of ~o are carried out both in the appro

ximation A and B for several ages, and the results are shown in Table 8. 

Table 8 

Numerical Results of 1 :~ in the approximation A. 

s 0.6 1.0 1.4 2.0 
1 ~.n 

0.98 1. 75 3.3 7.43 2 Wlo 

In the approximation B, the value of :la is approximately given by 

-
2
3 which hardly depends on s because a0 =0.7733. 
O'o 

Thus it seems reasonable for the comparison of theory with experi
ment to take the air density at about two cascade units above from the 
observation point. 

III. Numerical calculations of the structure function near the core 
for the finite incident energy 

In §3, we have pre;;ented the numerical results of the lateral struc
ture function which were calculated assuming that the parent energy of 
a cascade is infinitely high. In the vicinity of the shower axi~, however, 
the mean energy of shower particles is so high that the parent energy Eo 
of the shower can no longer be regarded as infinitely large. Furthermore, 
as the core structure of the extensive air showers would provide a powerful 
clue to the knowledge of the angular spread of the source particles, it is 
desirable to separate the core spread due to the spread of the parent 
particles emitted in the high energy nuclear interactions from that due to 
the Coulomb scattering of shower particles in the cascade. Then it seems 
necessary to present the detailed behavior of the structure function near the 
shower axis, and to estimate to what degree the structure function of a 
certain finite incident energy deviates from that of the infinite incident 
energy. 

To get the structure functions for the finite incident energies, we first 
define the ratio as 

R(E
0

, r, s) = f?nzCF:_o_=!f:_~_!_'!:_L~L. 
Pn2(Eo oo, r, s) 

(III •1) 
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The numerical calculation of R(E 0 ) is simpler than that of the direct calcu
lation of Pn2 (Eo-:f.oo, r, s) itself. 

As the structure function Pn/Eo oo) for the infinite parent energy 
was already obtained in §3, R(E 0 )Pu 2 (E 0 oo) gives the structure function 
for a certain finite value of E 0 • The numerical calculation of R(E 0 , r, s) 
can be performed approximately in the following way. 

At first, from the equation 

A~(s)t+ln(E 0je)- ~ 1/J'( 1 - ~ ) 0, (III • 2) 

where 1/J'(x) =Jx-Inr(x), we evaluate t for the certain values of (E0/E) and 

s. The age parameter s appearing in (III·2) is the same one defined in 
the one-dimensional cascade theory, and so represents the age of the shower 
as a whole at the depth t. 

Next, using the value of t thus obtained, the value of s' is evaluated 
for a certain value of r/r1 from the equation 

(III ·3) 

The value of s' here obtained depends upon the distance from the 
axis, r/r1 , and s' =s for r r 1 • This s' is the one which should be used 
for the calculation of the structure function for a finite value of Eo/e. Then 
the ratio R(E 0 ) is given by 

(III ·4) 

d2 
where 1/P'(x) =ax2 ln r(+), and Lls=s' s. 

The numerical results of Pn2 (Eo, r, s) = R(E0 )Pn2(Eo= oo, r, s) are shown 
in Figs. 16 and 17 for s = 1.0 and 1.4 respectively for several different 
values of E ole. 

As can be seen from these figures, the structure functions for the finite 
incident energies become flatter near the shovv-er axis when compared with 
the one for an infinite incident energy. The deviation occurs within about 
one tenth of Moleire unit, and the lower the incident energy and the shorter 
the distance from the axis, the larger the deviation becomes. 
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Fig. 16. Structure Function for the finite incident energy. s= 1. 0. The number 
attached to each curve represents the incident energy of the shower 
in terms of the critical energy. 

1.0 

 at U
N

A
M

 D
ireccion G

eneral de B
ibliotecas on M

ay 17, 2016
http://ptps.oxfordjournals.org/

D
ow

nloaded from
 

http://ptps.oxfordjournals.org/


150' K. Kamata and J. Nishimura 
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Fig. 17. Structure Function for the finite incident energy. s=l. 4. The number 
attached to each curve represents the incident energy of the shower 
in t~rms of the critical energy, 
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IV. Numerical evaluations of 'im(p, q, s, t) 

For the actual numerical evaluation of the structure functions, it is 

necessary to get the numerical values of 'im(p, q, s,t) from the difference 

equation in §3. A similar difference equation already appeared and was 

treated in the usual linear cascade theory, and in fact, the equation defin

ing 'im(p~o, q, s, t) coincides with the usual difference equation appear

ing in ·the linear cascade theory12>· 13). This is because, if we negleCt the 

effect' of the Coulomb scattering, the structure function obtained in §3 

and §4 must be the linear cascade function, and in this case 'im(p, q, s, t) 

appears only in the form of WC(p 0, q, s, t) in the structure function. 

As is shown in the paper of Bhabha-Chakrabarty13>, the solution of the 

difference equation (3·38) is given by 

M(p,q,s,t,~ t) J:wcco,O,s+2P+q,t t') 

X {p(~ t) 2 M(p-1, q, s, t', ~ -t') 

+q(s+2P+q)M(p,q 1,s,t',~ t')}dt'. (IV •1) 

Under a certain boundary condition, we can obtain the numerical values 

of 'im(p, q, s, t) for any values of positive integer p and q using the above 

formula. 
As is easily seen from the above solution, 'im(p, q, s, t) is usualy re-

presented by a polynomial containing e>-1<s>t, e>- 1 <sH)t, ......... , e>-2<s)t, e>-2<s+1)t, 

........ ·, in which all the terms except those containing e>- 1<s)t can be neglect· 

ed provided t~ 1. 

Another different approach for obtaining the numerical values of 

'im1 (p, q, s, t) is the operational calculation. 

The equation (3 • 38) can now be written in an operational form as 

fj 
f}t +ao 

M(p, q, s, t, ~ -t) = ~-=----·-·-,..--.-.-.;____..__-)_( -=------
J.1(s+2P+q) -

8
( J.2(s+2P+q)) 

x [p(~ t) 2M(p 1, q, s, t, ~ -t) 

+q(s+2P+q)M(p, q-1, s, t, ~ --t)]. (IV •2) 

Putting q=O, we get 

M(p, o, s, t, ~ t) =(---a H1(s+ 2P) + ____ 8fi~~-~--±-~f!)_ ____ J 
----- --~ A1 (s + 2P) ----- ;.2 (s + 2p) 
at at 

x {p(~--t) 2 M(p-l,O,s,t,~-t)}. (IV· 3) 
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152 K. Kamata and J. Nishimura 

Then if we limit ourselves to the terms containing e" 1 <s>t~ it can be written 
as 

M (p,. 0, s' t' ~- t) = e"l (S)t [ ----:;f)~~H~1 c ___ s~+_2...::;.p....:_) __ _ 
fit + it 1 ( s) it 1 ( s + 2 p) 

+ H2(s+2P) 

:t +it1 (s)- it2 (s +2P) 
)rpc <- t) 'M CP -1, o, s, t, <- t)e-'' ''''l . 

(IV •4) 

The above expression gives approximate values of 'iJJt.2 (p, q, s, t) with posi
tive integer p for t>l. 

For the values of 'iJJC1(p, q, s, t) appearing in the angul::tr structure func· 
tion, we can put ~ -- t = 1. If we limit ourselves to the terms containing 
e"1 <s>t, we get 

'iJJl ( p o t) - we ( 1 o t) [ H1 ( s + 2 P) H2 ( s + 2 p) ] 
1 

' ,s, -P 1 p- ~ ,s, ..t1(s) ..l1(s+2P) + ..l1(s) it2(s+2P) 

=L(p)'iJJt.l(p-1, 0, s, t). (IV•5) 

Since ~~rr;__f_ ~ tJ) 1, wcl ( p, 0, S, t) for any value of p is given by 

. . L (l) 1+o L (l- 1) .... · · L ( 1) 
'iJJl 1 (p,O,s,f)o=l,~rr; L(l+lJ) ... · .. L(n+lJ+ 1) , (IV·6) 

where n + lJ p and n is the integer. 
For the values of 'JJ~ 2 (p, 0, s, t) any simple approximate formula similar 

to that of mel cannot be obtained, because in this case :t operates (~ t)
2 

in the formula (IV •3). The value of 'Ufl2 (p, 0, s, t) for any value of P is 
obtained by an interpolation using the values of Wc1 (p, 0, s, t) for the posi· 
tive integer p. 

For the negative values of p, WC(p, 0, s, t) has a pole at p s 1 

Thus n 2 if. represented by 1/r2-s·-C2/ 3) near the shower axis as shown in the 
formula (3 ·43), 

The existence of the pole at p s 1 can be proved as follows: 
2 

Let 

oo (-X2)P 1 s+too 
G(x) = ~ r(p+ l) M(p, o, s, t) =2,nT -i!:C-p)x 2 v M(p, o, s, t)dp 

(IV ·7) 

be the generating function of 'JJC2 (p,O,s, t), then G(x) satisfie~: the follow 
ing equation: 
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[~, +A' 

The solution of this equation is 

G = e~:_c~i~)! J ""e 

e-t 
[A'- fi'C' J Gdt', 

-+oo at 

(IV •8) 

where the upper and the lower limits of the integral are determined using 

the property that G must be zero at the limit ~ t = oo. 
X 

Now the first term in the above integrand implies a factor 

A'G= f ~ [G(x)- (1-V) 8G(x(1-v)) ]q7(v)dv. (IV ·9) 

This is reduced to 

At the limit x = oo 

A'G= S:[ G(x) -( ~ rG(y) }o( 1-~ ) ~ ' 

and remembering 

1+L + ......... ' 
X 

we get 

limA'G=limG(x) =lim+,~an(~-t)". 
X-'3>oo :ll-'3>oo X-'3>oo X n 

(IV•10) 

In the second term in the integrand there appears 

B'C'G(x(~-t),x)=2 s:+(u)du s:G(xv(~-t),xv)V8qJ( ~) ~ 

=2 s:+(u)du s:uG(y(~ t),y)J8
X

8qJ( ;X):~ . 
At the limit x oo, the above formula becomes 
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B'C'G= 1.36 B,CO). s OOG(y(~ t)' y)y 8
- 1dy. 

X 8 
0 

Putting 

we get 

. B'C'G 
hm~--··-
X-l>oo a + at do 

(IV •11) 

(IV •12) 

To see the behavior of G at x oo, we take the lowest order of pow~r 
of 1/x in the above expressions (IV ·10) and (IV •12). 

Thus the solution of (IV • 8) becomes at the limit of x oo 

(IV •13) 

Putting (~ t') 3 z, we get 

Remembering the definition (IV •7), we can conclude that IDC 2 (p, 0, s, t) 
has a simple pole -.at P= (s/2) (1/3). After finding this pole, an ex~ 

trapolation is made.Jor the values of WC2 (p, 0, s, t) from the positive side 

to the negative side of the p-plane. 
A similar argument is also made for WC1 (p, 0, s, t) in the angular dic.tri-

bution function, and it can be shown that ?JJl1 has a simple pole at p (s/2) 
-1 instead of - (s/2)'~'(1/3). 

After obtaining the values of SJJC(p, 0, s, t), we can solve the equation 

by varying q for fixed values of p. 
Then, we get WC(p,q,s.,t) with any values of p and q. 
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