

HAWC Calibration Optimization:

Use Prototype WCD/Calibration/DAQ at CSU

John A.J. Matthews

johnm@phys.unm.edu

University of New Mexico Albuquerque, NM 87131

HAWC calibration: conceptual design

- Use a pulsed (300ps, 532nm laser) light source of known intensity and with known light transit time to the PMTs.
- Adjust the source intensity (using neutral density filters) over the (required) PMT dynamic range of ~ 0.1 PE to $\sim 10^4$ PEs.
- Optimize calibration details using the HAWC WCD prototype at CSU!

HAWC calibration: current $ToT \rightarrow n_{PE}$ analysis

- A calibration cycle involves ~ 2000 light pulses/intensity at 150 discrete intensities.
- The PMT occupancy (*i.e.* fraction of laser pulses with PMT signal $> V_{Lo}$) is related to the average number of PEs, $< n_{PE} >$, at that intensity (RM2 energy (J)).
- This is merged with the distribution of ToT (at that RM2 energy (J)) to obtain: ToT $\rightarrow n_{PE}$ for each of the PMTs (5 in this data from CSU) in the WCD.

HAWC calibration: $ToT \rightarrow n_{PE}$ details

- As noted: from occupancy, the average PMT signals in photo-electrons, $< n_{PE} >$, are known for each calibration intensity.
- Use Poisson probability: $P(n_{PE}; < n_{PE} >)$, and known PMT (Gaussian) resolution: $\sigma = 0.35\sqrt{n_{PE}}$, to correlate the measured distribution of ToT and the simulated distribution of signals n_{PE} .
- As the simulated n_{PE} must include the High(Low) trigger threshold, for High ToT we should restrict calibration intensities to those with occupancies $\gtrsim 99\%$.

HAWC calibration: *best* n_{PE} *estimate*

- With reliable conversions for $ToT \rightarrow n_{PE}$, how consistent are the determinations of n_{PE} from Low-ToT and High-ToT measurements?
- Plot shows:

$$\frac{(n_{PE}^{Hi} - n_{PE}^{Lo})}{\frac{(n_{PE}^{Hi} + n_{PE}^{Lo})}{2}}$$

- 1. Is there evidence for systematic differences VS n_{PE} ?
- 2. What do the data tell us about the uncertainty in our evaluations of n_{PE} ?
- Would look-up tables extend the $ToT \rightarrow n_{PE}$ calibration range?

HAWC calibration best estimate for timing

Black: Low Threshold
Red: High Threshold

- The calibration system allows us to measure the time *slewing* for both Low and High threshold channels.
- For a given signal, in n_{PE} , is one of the measurements of higher precision?
 - 1. What are the (asymmetric Gaussian) widths for the Low and High threshold slewing measurements VS n_{PE} ?
 - 2. Should we avoid using the High threshold slewing corrections near threshold (where the slewing correction varies rapidly with signal size)?
 - 3. Should we avoid using Low threshold slewing corrections in the region of possible PMT pre-pulsing?

Calibration system: can we use every laser pulse

- Measurements of the laser intensity VS time have shown temporal variations.
- Can we find a calibration strategy:
 - 1. that minimizes laser warm-up or other non-calibration operation of the laser
 - 2. that is tolerant to temporal intensity variations (*e.g.* sub-divide a *n*-pulse calibration with 1-RAD2 intensity measurement into *m* blocks with *m*-RAD2 intensity measurements and n/m pulses per block)?

HAWC calibration: how to maximize the efficiency

- The calibration deliverables are: $ToT \rightarrow n_{PE}$ and time slewing VS ToT.
 - 1. What are the minimum number of source light intensities needed?
 - 2. What are the optimal number of light pulses at each intensity?
- The goal is to minimize the calibration time and maximize laser lifetime.

HAWC calibration: extra credit

And the High VS Low *ToT* structure is explained by ...?